Приказ основних података о документу
The second mean value theorem for complex line integral
dc.contributor.author | Vujaković, Jelena | |
dc.contributor.author | Panić, Stefan | |
dc.contributor.author | Kontrec, Nataša | |
dc.date.accessioned | 2023-03-29T11:06:07Z | |
dc.date.available | 2023-03-29T11:06:07Z | |
dc.identifier.uri | https://platon.pr.ac.rs/handle/123456789/1141 | |
dc.description.abstract | In real iterations, several types of mean value theorems for definite integrals are used. In complex domain, we cannot specifically formulate the mean value theorem of a particular complex line integral (L) ∫f(z)dz , since we are unable to give an appropriate geometric interpretation of the integral over the surface below a curve L (from z0 to z1 ). Based on the mean value theorems for a complex line integral in [Vujakovic J., The mean value theorem of line complex integral and Sturm function. Applied Mathematical Sciences 2014; 8 (37): 1817-1827.], we got the idea to formulate the second mean value theorem in complex domain for the product of two analytic functions. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | TECHNICAL UNIVERSITY OF GABROVO, 2018 UNIVERSITY PUBLISHING HOUSE “V. APRILOV” – GABROVO, 2018 | en_US |
dc.title | The second mean value theorem for complex line integral | en_US |
dc.title.alternative | UNITECH 2018, International Scientific Conference, 16-17 November, Gabrovo 2018, Bulgaria | en_US |
dc.type | konferencijski-prilog | en_US |
dc.description.version | publishedVersion | en_US |
dc.citation.volume | 2 | |
dc.citation.spage | 320 | |
dc.citation.epage | 323 | |
dc.subject.keywords | mean value theorem | en_US |
dc.subject.keywords | analytic function | en_US |
dc.subject.keywords | power series | en_US |
dc.subject.keywords | iteration | en_US |
dc.type.mCategory | M33 | en_US |
dc.type.mCategory | openAccess | en_US |
dc.type.mCategory | M33 | en_US |
dc.type.mCategory | openAccess | en_US |
dc.identifier.ISSN | 1313-230X |