• Српски
    • Српски (Serbia)
    • English
  • Српски (ћирилица) 
    • Српски (ћирилица)
    • Српски (латиница)
    • Енглески
  • Пријава
Преглед рада 
  •   ПЛАТОН
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • Преглед рада
  •   ПЛАТОН
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • Преглед рада
JavaScript is disabled for your browser. Some features of this site may not work without it.

The second mean value theorem for complex line integral

Thumbnail
Отварање
Gbr18-JelStNat.pdf (133.2Kb)
Аутори
Vujaković, Jelena
Panić, Stefan
Kontrec, Nataša
Метаподаци
Приказ свих података о документу
Апстракт
In real iterations, several types of mean value theorems for definite integrals are used. In complex domain, we cannot specifically formulate the mean value theorem of a particular complex line integral (L) ∫f(z)dz , since we are unable to give an appropriate geometric interpretation of the integral over the surface below a curve L (from z0 to z1 ). Based on the mean value theorems for a complex line integral in [Vujakovic J., The mean value theorem of line complex integral and Sturm function. Applied Mathematical Sciences 2014; 8 (37): 1817-1827.], we got the idea to formulate the second mean value theorem in complex domain for the product of two analytic functions.
URI
https://platon.pr.ac.rs/handle/123456789/1141
М категорија
M33
openAccess
M33
openAccess
Колекције
  • Главна колекција / Main Collection

DSpace software copyright © 2002-2016  DuraSpace
О ПЛАТОН репозиторијуму | Пошаљите запажања
Theme by 
Atmire NV
 

 

Комплетан репозиторијумИнституцијеПо датуму издавањаАуториНасловиТемеОва институцијаПо датуму издавањаАуториНасловиТеме

Мој налог

ЛогинРегистрација

DSpace software copyright © 2002-2016  DuraSpace
О ПЛАТОН репозиторијуму | Пошаљите запажања
Theme by 
Atmire NV