• Српски
    • Српски (Serbia)
    • English
  • English 
    • Serbian (Cyrilic)
    • Serbian (Latin)
    • English
  • Login
View Item 
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • View Item
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The second mean value theorem for complex line integral

Thumbnail
View/Open
Gbr18-JelStNat.pdf (133.2Kb)
Authors
Vujaković, Jelena
Panić, Stefan
Kontrec, Nataša
Metadata
Show full item record
Abstract
In real iterations, several types of mean value theorems for definite integrals are used. In complex domain, we cannot specifically formulate the mean value theorem of a particular complex line integral (L) ∫f(z)dz , since we are unable to give an appropriate geometric interpretation of the integral over the surface below a curve L (from z0 to z1 ). Based on the mean value theorems for a complex line integral in [Vujakovic J., The mean value theorem of line complex integral and Sturm function. Applied Mathematical Sciences 2014; 8 (37): 1817-1827.], we got the idea to formulate the second mean value theorem in complex domain for the product of two analytic functions.
URI
https://platon.pr.ac.rs/handle/123456789/1141
M category
M33
openAccess
M33
openAccess
Collections
  • Главна колекција / Main Collection

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

All of DSpaceInstitutionsBy Issue DateAuthorsTitlesSubjectsThis institutionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV