Приказ основних података о документу

dc.contributor.authorVujaković, Jelena
dc.contributor.authorPanić, Stefan
dc.contributor.authorKontrec, Nataša
dc.date.accessioned2023-03-29T11:06:07Z
dc.date.available2023-03-29T11:06:07Z
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/1141
dc.description.abstractIn real iterations, several types of mean value theorems for definite integrals are used. In complex domain, we cannot specifically formulate the mean value theorem of a particular complex line integral (L) ∫f(z)dz , since we are unable to give an appropriate geometric interpretation of the integral over the surface below a curve L (from z0 to z1 ). Based on the mean value theorems for a complex line integral in [Vujakovic J., The mean value theorem of line complex integral and Sturm function. Applied Mathematical Sciences 2014; 8 (37): 1817-1827.], we got the idea to formulate the second mean value theorem in complex domain for the product of two analytic functions.en_US
dc.language.isoen_USen_US
dc.publisherTECHNICAL UNIVERSITY OF GABROVO, 2018 UNIVERSITY PUBLISHING HOUSE “V. APRILOV” – GABROVO, 2018en_US
dc.titleThe second mean value theorem for complex line integralen_US
dc.title.alternativeUNITECH 2018, International Scientific Conference, 16-17 November, Gabrovo 2018, Bulgariaen_US
dc.typekonferencijski-prilogen_US
dc.description.versionpublishedVersionen_US
dc.citation.volume2
dc.citation.spage320
dc.citation.epage323
dc.subject.keywordsmean value theoremen_US
dc.subject.keywordsanalytic functionen_US
dc.subject.keywordspower seriesen_US
dc.subject.keywordsiterationen_US
dc.type.mCategoryM33en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM33en_US
dc.type.mCategoryopenAccessen_US
dc.identifier.ISSN1313-230X


Документи

Thumbnail

Овај рад се појављује у следећим колекцијама

Приказ основних података о документу