Show simple item record

dc.contributor.authorMitic, Vojislav V.
dc.contributor.authorMilosevic, Dusan
dc.contributor.authorRandjelovic, Branislav
dc.contributor.authorMilosevic, Mimica
dc.contributor.authorMarkovic, Bojana
dc.contributor.authorFecht, Hans
dc.contributor.authorVlahovic, Branislav
dc.date.accessioned2022-11-04T13:52:15Z
dc.date.available2022-11-04T13:52:15Z
dc.date.issued2022
dc.identifier.citationИИИ 43007 “Истраживање климатских промена и њиховог утицаја на животну средину - праћење утицаја, адаптација и ублажавање”en_US
dc.identifier.citationТР 32012 „Интелигентни Кабинет за Физикалну Медицину – ИКАФИМ“en_US
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/903
dc.description.abstractThe particles in condensed matter physics are almost characterized by Brownian motion. This phenomenon is the basis for a very important understanding of the particles motion in condensed matter. For our previous research, there is already applied and confirmed the complex fractal correction which includes influence of parameters from grains and pores surface and also effects based on particles’ Brownian motion. As a chaotic structure of these motions, we have very complex research results regarding the particles’ trajectories in three-dimension (3D). In our research paper, we applied fractal interpolation within the idea to reconstruct the above mentioned trajectories in two dimensions at this stage. Because of the very complex fractional mathematics on Brownian motion, we found and developed much simpler and effective mathematization. The starting point is within linear interpolation. In our previous research, we presented very original line fractalization based on tensor product. But, in this paper, we applied and successfully confirmed that by fractal interpolation (Akimo polynomial method) that is possible to reconstruct the chaotical trajectories lines structures by several fractalized intervals and involved intervals. This novelty is very important because of the much more effective procedure that we can reconstruct and in that way control the particles’ trajectories. This is very important for further advanced research in microelectronics, especially inter-granular micro capacitors.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishing Company (WSPC), Сингапурen_US
dc.rightsCC0 1.0 Универзална*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleThe fractal interpolation applied on brownian motion particles trajectories reconstructionen_US
dc.title.alternativeInternational Journal of Modern Physics Ben_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.1142/S0217979222500357
dc.citation.volume36
dc.citation.issue4
dc.citation.spage2250035
dc.subject.keywordsLinear interpolation, fractal interpolation, Brownian motion, particles, microstructureen_US
dc.type.mCategoryM24en_US
dc.type.mCategoryclosedAccessen_US
dc.type.mCategoryM24en_US
dc.type.mCategoryclosedAccessen_US
dc.identifier.ISSNprint 0217-9792
dc.identifier.ISSNonline 1793-6578


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Универзална
Except where otherwise noted, this item's license is described as CC0 1.0 Универзална