Приказ основних података о документу

dc.contributor.authorMitic, Vojislav V.
dc.contributor.authorRibar, Srdjan
dc.contributor.authorRandjelovic, Branislav
dc.contributor.authorLu, Chun-An
dc.contributor.authorRadovic, Ivana
dc.contributor.authorStajcic, Aleksandar
dc.contributor.authorNovakovic, Igor
dc.contributor.authorVlahovic, Branislav
dc.date.accessioned2022-11-04T11:34:26Z
dc.date.available2022-11-04T11:34:26Z
dc.date.issued2020
dc.identifier.citationИИИ 43007 “Истраживање климатских промена и њиховог утицаја на животну средину - праћење утицаја, адаптација и ублажавање”en_US
dc.identifier.citationТР 32012 „Интелигентни Кабинет за Физикалну Медицину – ИКАФИМ“en_US
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/887
dc.description.abstractThis research is based on the idea to design the interface structure around the grains and thin layers between two grains, as a possible solution for deep microelectronic parameters integrations. The experiments have been based on nano-BaTiO3 powders with Y-based additive. The advanced idea is to create the new observed directions to network microelectronic characteristics in thin films coated around and between the grains on the way to get and compare with global results on the samples. Biomimetic similarities are artificial neural networks which could be original method and tools that we use to map input–output data and could be applied on ceramics microelectronic parameters. This mapping is developed in the manner like signals that are processed in real biological neural networks. These signals are processed by using artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which represents sensitivity to inputs. The integrated network output presents practically the large number of inner neurons outputs sum. This original idea is to connect analysis results and neural networks. It is of the great importance to connect microcapacitances by neural network with the goal to compare the experimental results in the bulk samples measurements and microelectronics parameters. The result of these researches is the study of functional relation definition between consolidation parameters, voltage (U), consolidation sintering temperature and relative capacitance change, from the bulk sample surface down to the coating thin films around the grains.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishing Company (WSPC), Сингапурen_US
dc.rightsCC0 1.0 Универзална*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleNeural Networks and Microelectronic Parameters Distribution Measurements depending on Sintering Temperature and Applied Voltageen_US
dc.title.alternativeModern Physic Letters Ben_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.1142/S0217984921501724
dc.citation.volume34
dc.citation.issue35
dc.citation.spage2150172
dc.subject.keywordsNeural network, intergranular capacity, supervised learning, BaTiO3en_US
dc.type.mCategoryM22en_US
dc.type.mCategoryclosedAccessen_US
dc.type.mCategoryM22en_US
dc.type.mCategoryclosedAccessen_US
dc.identifier.ISSNprint 0217-9849
dc.identifier.ISSNonline 1793-6640


Документи

Thumbnail
Thumbnail

Овај рад се појављује у следећим колекцијама

Приказ основних података о документу

CC0 1.0 Универзална
Осим где је другачије наведено, лиценца овог рада је описана саCC0 1.0 Универзална