Приказ основних података о документу

dc.contributor.authorLjajko, Eugen
dc.contributor.authorNajdanović, Marija
dc.contributor.authorMaksimović, Miroslav
dc.contributor.authorKontrec, Nataša
dc.date.accessioned2022-10-25T08:48:14Z
dc.date.available2022-10-25T08:48:14Z
dc.identifier.citationMinistry of Education, Science and Technological Development, Serbia [451-03-68/2020-14/20-0123]en_US
dc.identifier.isbn978-86-81506-17-2
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/790
dc.description.abstractIn geometry teaching, visualization is an indispensable method of work. Its importance is emphasized in the study of abstract theories when the human mind is not capable enough to perceive the regularities determined by complex mathematical formulas without adequate images illustrating the problem. This is also the case with the theory of infinitesimal bending, that has recently been explored and represented with the use of computers. Use of computers, as an indispensable didactic tool for modern teaching, can be very effective supplement to the traditional theoretical considerations. In this paper, firstly we determine the infinitesimal bending field of curves on the hyperbolic paraboloid, and then visualize the obtained results using the Mathematica program to see how visualization helps us to study geometric content.en_US
dc.language.isoen_USen_US
dc.publisherState University of Novi Pazaren_US
dc.titleVISUALIZATION OF GEOMETRIC OBJECTS USING PROGRAM PACKAGE MATHEMATICAen_US
dc.title.alternative7th International Conference CONTEMPORARY PROBLEMS OF MATHEMATICS, MECHANICS AND INFORMATICS, Book of Abstractsen_US
dc.typekonferencijski-prilogen_US
dc.description.versionworkVersionen_US
dc.subject.keywordsvisualizationen_US
dc.subject.keywordsgeometry teachingen_US
dc.subject.keywordsMathematicaen_US
dc.subject.keywordsinfinitesimal bendingen_US
dc.subject.keywordshyperbolic paraboloiden_US
dc.type.mCategoryM34en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM34en_US
dc.type.mCategoryopenAccessen_US


Документи

Thumbnail

Овај рад се појављује у следећим колекцијама

Приказ основних података о документу