Prikaz osnovnih podataka o dokumentu

dc.contributor.authorMaksimović, Vladimir
dc.contributor.authorLekić, Predrag
dc.contributor.authorPetrović, Mile
dc.contributor.authorJakšić, Branimir
dc.contributor.authorSpalević, Petar
dc.date.accessioned2022-09-27T10:05:54Z
dc.date.available2022-09-27T10:05:54Z
dc.date.issued2019
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/681
dc.description.abstractThe influence of different wavelet transformations and decomposition on edge detection was examined, using convenient operators to images of various complexities. Berkeley Segmentation Database images with the corresponding ground truth were used. The categorization of those images was accomplished according to the degree of complexity in three groups (small, medium, and large number of details), by using discrete cosine transformation and discrete wavelet transformation. Three levels of decomposition for eight wavelet transformations and five operators for edge detection were applied on these images. As an objective measure of the quality for edge detection, the parameters “performance ratio” and “F-measure” were used. The obtained results showed that edge detection operators behaved differently in images with a different number of details. Decomposition significantly degrades the image, but useful information can be extracted at the third level of decomposition, because the image with a different number of details behaves differently at each level. For an image with a certain number of details, decomposition Level 3 in some cases gives better results than Level 2. The obtained results can be applied to image compression with different complexity. By selecting a certain combination of operators and decomposition levels, a higher compression ratio with preserving a larger amount of useful image information can be achieved. Depending on the image resolution whereby the number of details varies, an operator optimization can be performed according to the decomposition level in order to obtain the best possible edge detection.en_US
dc.language.isoen_USen_US
dc.publisherPROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCESen_US
dc.rightsАуторство-Некомерцијално-Без прерада 3.0 САД*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.titleExperimental analysis of wavelet decomposition on edge detectionen_US
dc.title.alternativePROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCESen_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doi10.3176/proc.2019.3.06
dc.citation.volume68
dc.subject.keywordsedge detectionen_US
dc.subject.keywordsperformance ratioen_US
dc.subject.keywordsimage complexityen_US
dc.type.mCategoryM23en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM23en_US
dc.type.mCategoryopenAccessen_US


Dokumenti

Thumbnail
Thumbnail

Ovaj rad se pojavljuje u sledećim kolekcijama

Prikaz osnovnih podataka o dokumentu

Ауторство-Некомерцијално-Без прерада 3.0 САД
Osim gde je drugačije navedeno, licenca ovog rada je opisana saАуторство-Некомерцијално-Без прерада 3.0 САД