Приказ основних података о документу
Knot Bending
dc.contributor.author | Najdanović, Marija | |
dc.contributor.author | Velimirović, Ljubica | |
dc.contributor.author | Rančić, Svetozar | |
dc.date.accessioned | 2023-04-06T10:33:44Z | |
dc.date.available | 2023-04-06T10:33:44Z | |
dc.identifier.citation | Ministry of Education, Science and Technological Development, Serbia [451-03-68/2020-14/200123] | en_US |
dc.identifier.citation | Ministry of Education, Science and Technological Development, Serbia [451-03-68/2020-14/200124] | en_US |
dc.identifier.isbn | 978-608-4904-09-0 | |
dc.identifier.uri | https://platon.pr.ac.rs/handle/123456789/1166 | |
dc.description.abstract | In this paper we point out the geometric aspect of knots. By the term knot we mean a closed self-avoiding curve in a 3-dimensional Euclidean space. We consider infinitesimal bending of knots and examine the behavior of torus knots under this type of deformation. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Union od Mathematicians of Macedonia – ARMAGANKA | en_US |
dc.title | Knot Bending | en_US |
dc.title.alternative | Proceedings of the CODEMA 2020 | en_US |
dc.type | konferencijski-prilog | en_US |
dc.description.version | publishedVersion | en_US |
dc.subject.keywords | Knot | en_US |
dc.subject.keywords | infinitesimal bending | en_US |
dc.subject.keywords | variation | en_US |
dc.subject.keywords | Frenet-Serret frame | en_US |
dc.subject.keywords | torus knot | en_US |
dc.type.mCategory | M33 | en_US |
dc.type.mCategory | openAccess | en_US |
dc.type.mCategory | M33 | en_US |
dc.type.mCategory | openAccess | en_US |