Show simple item record

dc.contributor.authorNajdanović, Marija
dc.contributor.authorVelimirović, Ljubica
dc.contributor.authorRančić, Svetozar
dc.date.accessioned2023-04-06T10:33:44Z
dc.date.available2023-04-06T10:33:44Z
dc.identifier.citationMinistry of Education, Science and Technological Development, Serbia [451-03-68/2020-14/200123]en_US
dc.identifier.citationMinistry of Education, Science and Technological Development, Serbia [451-03-68/2020-14/200124]en_US
dc.identifier.isbn978-608-4904-09-0
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/1166
dc.description.abstractIn this paper we point out the geometric aspect of knots. By the term knot we mean a closed self-avoiding curve in a 3-dimensional Euclidean space. We consider infinitesimal bending of knots and examine the behavior of torus knots under this type of deformation.en_US
dc.language.isoen_USen_US
dc.publisherUnion od Mathematicians of Macedonia – ARMAGANKAen_US
dc.titleKnot Bendingen_US
dc.title.alternativeProceedings of the CODEMA 2020en_US
dc.typekonferencijski-prilogen_US
dc.description.versionpublishedVersionen_US
dc.subject.keywordsKnoten_US
dc.subject.keywordsinfinitesimal bendingen_US
dc.subject.keywordsvariationen_US
dc.subject.keywordsFrenet-Serret frameen_US
dc.subject.keywordstorus knoten_US
dc.type.mCategoryM33en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM33en_US
dc.type.mCategoryopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record