Show simple item record

dc.contributor.authorPatle, Pradip
dc.contributor.authorVujaković, Jelena
dc.contributor.authorPatel, Deepesh
dc.contributor.authorRadenović, Stojan
dc.date.accessioned2023-03-31T10:44:58Z
dc.date.available2023-03-31T10:44:58Z
dc.date.issued2019-04-07
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/1155
dc.description.abstractA new proper generalization of metric called as θ -metric is introduced by Khojasteh et al. (Mathematical Problems in Engineering (2013) Article ID 504609). In this paper, first we prove the Caristi type fixed point theorem in an alternative and comparatively new way in the context of θ -metric. We also investigate two θ -metrics on CB(X) (family of nonempty closed and bounded subsets of a set X). Furthermore, using the obtained θ -metrics on CB(X) , we prove two new fixed point results for multi-functions which generalize the results of Nadler and Lim type in the context of such spaces. In order to illustrate the usability of our results, we equipped them with competent examples.en_US
dc.language.isoen_USen_US
dc.publisherMDPI (Basel, Switzerland)en_US
dc.titleCaristi, Nadler and H + -Type Contractive Mappings and Their Fixed Points in θ-Metric Spacesen_US
dc.title.alternativeSymmetryen_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.3390/sym11040504
dc.citation.volume11
dc.citation.issue4
dc.citation.spage504
dc.subject.keywordsθ-metricen_US
dc.subject.keywordsθ-Hausdorff distanceen_US
dc.subject.keywordsmultivalued mappingen_US
dc.subject.keywordsfixed pointen_US
dc.type.mCategoryM22en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM22en_US
dc.type.mCategoryopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record