Show simple item record

dc.contributor.authorVujaković, Jelena
dc.contributor.authorLjajko, Eugen
dc.contributor.authorRadojević, Slobodan
dc.contributor.authorRadenović, Stojan
dc.date.accessioned2023-03-31T10:28:25Z
dc.date.available2023-03-31T10:28:25Z
dc.date.issued2020-12-10
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/1153
dc.description.abstractMany authors used the concept of F−contraction introduced by Wardowski in 2012 in order to define and prove new results on fixed points in complete metric spaces. In some later papers (for example Proinov P.D., J. Fixed Point Theory Appl. (2020)22:21, doi:10.1007/s11784-020-0756-1) it is shown that conditions (F2) and (F3) are not necessary to prove Wardowski’s results. In this article we use a new approach in proving that the Picard–Jungck sequence is a Cauchy one. It helps us obtain new Jungck–Fisher–Wardowski type results using Wardowski’s condition (F1) only, but in a way that differs from the previous approaches. Along with that, we came to several new contractive conditions not known in the fixed point theory so far. With the new results presented in the article, we generalize, extend, unify and enrich methods presented in the literature that we cite.en_US
dc.language.isoen_USen_US
dc.publisherMDPI (Basel, Switzerland)en_US
dc.titleOn Some New Jungck–Fisher–Wardowski Type Fixed Point Resultsen_US
dc.title.alternativeSymmetryen_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.3390/sym12122048
dc.citation.volume12
dc.citation.issue12
dc.citation.spage2048
dc.subject.keywordsbanach contraction principleen_US
dc.subject.keywordsFisher fixed point theoremen_US
dc.subject.keywordsWardowski-type contractionsen_US
dc.subject.keywordscompatibleen_US
dc.subject.keywordsweakly compatibleen_US
dc.subject.keywordscommon fixed pointen_US
dc.type.mCategoryM22en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM22en_US
dc.type.mCategoryopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record