Приказ основних података о документу
On Some New Results in Graphical Rectangular b-Metric Spaces
dc.contributor.author | Baradol, Pravin | |
dc.contributor.author | Vujaković, Jelena | |
dc.contributor.author | Gopal, Dhananjay | |
dc.contributor.author | Radenović, Stojan | |
dc.date.accessioned | 2023-03-31T08:19:38Z | |
dc.date.available | 2023-03-31T08:19:38Z | |
dc.date.issued | 2020-04-01 | |
dc.identifier.uri | https://platon.pr.ac.rs/handle/123456789/1147 | |
dc.description.abstract | In this paper, we provide an approach to establish the Banach contraction principle (for the case λ∈[0,1)) , Edelstein, Reich, and Meir–Keeler type contractions in the context of graphical rectangular b-metric space. The obtained results not only enrich and improve recent fixed point theorems of this new metric spaces but also provide positive answers to the questions raised by Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019). | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | MDPI (Basel, Switzerland) | en_US |
dc.title | On Some New Results in Graphical Rectangular b-Metric Spaces | en_US |
dc.title.alternative | Mathematics | en_US |
dc.type | clanak-u-casopisu | en_US |
dc.description.version | publishedVersion | en_US |
dc.identifier.doi | https://doi.org/10.3390/math8040488 | |
dc.citation.volume | 8 | |
dc.citation.issue | 4 | |
dc.citation.spage | 488 | |
dc.subject.keywords | graphical rectangular b-metric space | en_US |
dc.subject.keywords | Banach G-contraction | en_US |
dc.subject.keywords | Edelstein G-contraction | en_US |
dc.subject.keywords | Meir–Keeler G-contraction | en_US |
dc.subject.keywords | Reich G-contraction | en_US |
dc.type.mCategory | M21a | en_US |
dc.type.mCategory | openAccess | en_US |
dc.type.mCategory | M21a | en_US |
dc.type.mCategory | openAccess | en_US |