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1 Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia;
panic.biljana@fon.bg.ac.rs (B.P.); vujosevic.mirko@fon.bg.ac.rs (M.V.)

2 Faculty of Sciences, University in Priština—Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
stefan.panic@pr.ac.rs

* Correspondence: natasa.kontrec@pr.ac.rs

Received: 26 July 2020; Accepted: 30 August 2020; Published: 5 September 2020
����������
�������

Abstract: In this paper, a stochastic problem of multicenter location on a graph was formulated
through the modification of the existing p-center problem to determine the location of a given number
of facilities, to maximize the reliability of supplying the system. The system is represented by a graph
whose nodes are the locations of demand and the potential facilities, while the weights of the arcs
represent the reliability, i.e., the probability that an appropriate branch is available. First, k locations
of facilities are randomly determined. Using a modified Dijkstra’s algorithm, the elementary path of
maximal reliability for every demand node is determined. Then, a graph of all of elementary paths
for demand node is formed. Finally, a new algorithm for calculating the reliability of covering a node
from k nodes (k—covering reliability) was formulated.
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1. Introduction

The problems of location include the tasks of selecting several facilities from a set of existing
facilities, or determining the position (location) of new facilities in the environment of the
existing, to make the distance between the selected (located) and the existing facilities as large as
possible (location of desired facilities) or as small as possible (location of obnoxious facilities) [1,2].
The complexity of the location problem has led to the formulation of numerous mathematical models
that are applied to describe the existing activities, as well as for the location of new facilities which
need to efficiently perform certain services or activities. One of the classifications of location models
includes continuous, discrete, and network models [3].

An overview of location problems is given in [1,3]. As the basic network location models
in [1], the following are listed; Set Covering Location Problem (SCLP), Maximal Covering Location
Problem (MCLP), p-center problem, p-dispersion problem, p-median problem, Fixed Charge Location
Problem, Hub Location Problem, and The Maximum Location Problem. The robust optimization
approach to the p-center location problem has been given in [4]. Adeleke and Olukanni described
models which have been adapted to problems relating to waste management: Single Facility Location
Problem, Multi-Facility Location Problem, Fixed Costs Capacitated Facility Location Problem,
Capacitated p-Median Facility Location Problem, Covering Location Problems (Symmetrical Total
Covering and Maximum Covering Location Problem), and Undesirable Facility Location Problem [5].

In this paper, based on the existing network location models, a location model with stochastic
input data has been defined, and an algorithm has been formulated for calculating performances of
a system as a basis for finding the optimal location. The existing models are deterministic, while in
many cases, in practice, it is necessary to include stochasticity in planning of the facility’s location.
Therefore, this paper examines stochastic location models. In practice, in transportation networks,
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the path between the demand node and facility does not have to be 100% reliable. The probability that
a path will work properly or not might depend on a number of conditions such as quality of the road,
traffic congestion, reparations, impact of weather conditions, etc. The problem of network reliability is
a well-known problem that measures the probability that a target node is reachable from a source node.
Graphs with edges assigned to a probability of existence are called uncertain graphs. As they have a
wide range of applications, they are very interesting for researchers. Based on these facts, in this paper
we present a new approach for determination of reliability of covering each node from the source
to the target one. Through the modification of the existing p-center problem, a stochastic model of
k-center location on the graph has been formulated to determine the location of a given number of
facilities, to maximize the reliability of the system. The problem refers to a network structure which is
determined by a graph whose nodes contain the locations of demand and potential facilities, while the
weight of the branches represents reliability, i.e., the probability that an appropriate branch is available
(operational). An uncertain (probabilistic) graph G = (V, E, p) is defined over a set of nodes V, a set
of edges E between nodes of V, and a probability function p : E → (` 0, 1]. For edge e ∈ E, p(e) is
independent of the other edges [6]. In the end, a new algorithm has been formulated to determine the
reliability of covering a node from k nodes (k-covering reliability).

2. Theoretical Background

Some authors defined location models with stochastic input data, based on the existing network
location models. Louveaux, in [7], studied a model with uncertainty on demands, variable production
and transportation costs, and selling prices. Hwang [8] studied a special case of a stochastic set-covering
location problem. Alegre at al. [9] solved a stochastic facility location problem that consists of
determining the best locations in which to place health resources, where patients who had suffered a
diabetic coma could be attended. Schutz et al. [10] considered the problems of minimizing the expected
costs of the location of a certain number of facilities which produce a single product, and the allocation
of unspecified demand of users towards these facilities. Miranda and Garrido [11] have presented a
model for inventory control and decision-making on the location of the facilities, which includes two
new capacity constraints—the first defines the maximum size of orders arriving in each warehouse,
while the other limitation is the stochastic bound to inventory capacity. In [12], the authors presented
the stochastic gradual cover model in which they assumed that the short and long distances employed
in gradual cover models are random variables. In [13] authors used generalized iterative greedy
algorithm to solve a multiobjective facility location problem. Cattani et al. [14], Mak and Shen [15],
and Berman and Kras [16] considered stochastic demand. To include stochasticity in the location models,
researchers often resort to scenario planning as in [17,18]. An interesting approach based on facility
location problem in drone deployment has been given in [19]. Classical facility location models assume
that once constructed, the facilities chosen will always operate as planned. In reality, facilities fail from
time to time. Such problems are considered in [20–26]. In [24], the authors computed all nodes reachable
from a set of query nodes with probability no less than a given threshold. Ceccarello et al. [6] partitioned
nodes of the uncertain graph into k clusters, each featuring a distinguished center node. Than they
maximized the minimum/average connection probability of any node to its cluster’s center. The authors
of [25] assumed that edge-existence probabilities depend on a set of conditions, so probabilities are
not fixed. Kassiano et al. made an overview of the algorithmic techniques proposed in the literature
for uncertain graphs. They focused on graph mining tasks: clustering, maximal cliques, k-nearest
neighbors, and core decomposition [26].

3. Problem Description

In this paper, an authentic stochastic location problem is described and a method for calculating
system reliability as an objective function of the optimization problem is proposed. Only location
problems on networks are discussed. This means that the subject of consideration is a weight graph
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in which each arc of the graph is joined with a number from the interval (0, 1). In a realistic system,
the given value for the weight of a branch may correspond to one of the following cases.

- Reliability or interval availability, i.e., the probability that the transmission of information or the
flow of vehicles through a traffic line will be achieved during a given period without failure,
i.e., without interruption of traffic or congestion.

- Current availability of the communication line, i.e., the probability that at a random moment the
arc will be operational and capable of transferring information.

Further in the paper, the joined weight will be observed as probability, and shall be referred to as
reliability or arc availability. In general, the weight of an arc can be observed as the probability of the
existence of an arc in a random graph. Assuming that arc failures are jointly statistically independent
events, the reliability of the path between two nodes can be defined as the product of the reliability of
branches of which it consists. The reliability of the path is interpreted as the probability of mutual reach
of the end nodes through the use of a given path. Considering that there can be several paths between
two nodes in a graph, the probability of jointly reaching a pair of nodes is defined as the probability of
the most reliable path between the observed nodes. This probability can alternatively be called the
reliability of covering the final (terminal) node from the given initial node. The probability of mutual
reaching defined in such a manner differs from the commonly adopted definition of reliability between
two nodes of a network structure, which takes into account all of the possible paths between them.

The problem of the selection of a location for a facility (warehouse) can be set up as a classic
problem of maximum coverage of the remaining nodes from the selected one. Further on in the paper,
the terms warehouse and consumer will be used. Therefore, for each node (for each consumer), it is
possible to determine the probability of reaching it from the node which is observed as the selected
location (warehouse). Out of all of the probabilities calculated in such a manner, the lowest value is
taken as a criterion, and an optimization task of a max-min type is set up. This task is reduced through
a logarithm of the objective function to a classic problem of determining the center of the weight graph,
i.e., the max-min problem.

When it comes to the problem of the location of several facilities (warehouses), it is necessary
to define the probabilities of covering a particular consumer from the selected warehouses. For this
purpose, we started from the following assumptions.

- It is considered that the coverage (reaching) of the consumer from a specific warehouse is achieved
along the path of maximum reliability from that particular warehouse to the consumer.

- The consumer is covered if he is covered from at least one warehouse.

From the given assumptions, it follows that the probability of covering a consumer should be
calculated as the probability of a union of events that the consumer will be covered from the observed
warehouses. Starting from this definition, analogous to the location problem of a single warehouse,
it is again possible to calculate the probability of covering every consumer and to adopt the minimal
as the criterion of optimization.

4. Problem Solving

The reliability of covering a node from k location nodes can be calculated by applying a new
algorithm which is given below. First, it is necessary to determine the elementary paths with maximum
reliability between the consumer and each of the k warehouses. The nodes on that most reliable path
make a set and form a subgraph, which shall be treated as an oriented graph with a direction from its
root towards its leaves.
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We randomly determine the k location (of nodes) in which the facilities (warehouses) will be
located. Then, for every consumer, the elementary path of maximal reliability between it and each of the
k warehouses has to be found. The problem can be described with the following mathematical model.

(max) ∑
(i,j)∈L

rijxij

s.t.

∑
j∈Γ(s)

xsj = 1

∑
j∈Γ−1(t)

xjt = 1

∑
j∈Γ−1(i)

xji = ∑
j∈Γ(i)

xij, i ∈ N \ {s, t}

xij ∈ {0, 1} , (i, j) ∈ L

Actually, we are observing weighted graph where reliability rij, (i, j) ∈ N is assigned to each branch
and x ∈ {0, 1}|L|. Constraints should ensure that the obtained solution is indeed the elementary path
of maximum reliability between start node (consumer) s and end node (warehouse) t. Only one branch
enters the node t and for each node except s and t, one of the following should apply,

- that one branch enters and one branch exits it, or
- that no branch should enter or leave it.

To solve such problems, an algorithm has been developed for determining the path of maximum
reliability, which represents a modified Dijkstra’s algorithm which is used iteratively for each pair of
terminal nodes.

Notation used in the paper is given below.

G = (N, L, R)—weighted graph, where
N = (1, . . . , i, . . . , n)—set of nodes
L ⊆ N × N = {(i, j) |i ∈ N, j ∈ N }—set of arcs
R—function which joins to each arc (i, j) the weight (reliability) rij from the interval [0, 1],
R : L→ [0, 1]
rij—reliability of arc (i, j)
Q =

{
j1, ..., jq, ..., jk

}
—set of warehouse indexes, Q ⊂ N

k—total number of warehouses to be located
I = N\Q = {jk+1, ..., ji, ..., jn}—set of consumer nodes
For the purpose of simplicity, warehouse indexes will be abbreviated as q, q ∈ Q while consumer
indexes as i, i ∈ I
Piq—path of maximum reliability from warehouse q to consumer i. The path consists of an

array of arcs
(
(q, nji)(nj1, nj2), ..., (njl , i)

)
and is alternatively represented as an array of nodes

Piq =
(

q, nj1, nj2, ..., njl , i
)

Riq—reliability of covering consumer from warehouse q (reliability of path Piq) Riq = ∏
(j,i)∈Piq

rjl

Ri—reliability of covering consumer i from all of the k warehouses
Γ(s)—set of successor nodes of node s where s is a start node (consumer)
Γ−1(t)—set the predecessor nodes of node t where t is terminal node (warehouse).

5. Reliability of Covering a Node from k Node

When all of the paths Piq, q ∈ Q, i ∈ I are determined, we should determine reliability Ri of
covering consumer i from all k warehouses. To solve this task for particular consumer i, we first form a
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graph of all of the paths Piq, q ∈ Q. This graph has a tree structure whose root contains consumer i
while the leaves are in the warehouse nodes.

It should be noted that the path of maximum reliability from a warehouse q1 to a particular
customer i can include a node that represents a different warehouse q2. In this case, it is reasonable
to exclude from consideration the subpath from node q1 to node q2, which corresponds to a realistic
situation where it makes no sense to supply consumer i from the node q1.

The assumption is that under the previous rules, a tree whose root represents consumer i is
formed, while the leaves represent the warehouses from which the consumer is covered. Without loss
regarding the generality of the procedure, one can also assume that we are talking about k leaves in
the tree, i.e., that the number of warehouses is k. It is necessary to calculate reliability Ri of covering
consumer i from all of the warehouses.

In a case when the paths Piq are disjoint, i.e., when they have no common subpaths, the reliability
of covering the i-th node from k nodes is calculated according to a familiar formula:

Ri =
k

∑
q=1

Riq −
k−1

∑
q=1

k

∑
j=q+1

RiqRij +
k−2

∑
q=1

k−1

∑
j=q+1

k

∑
z=j+1

RiqRijRiz − . . . + (−1)k−1
k

∏
q=1

Riq

When the paths Piq are not disjoint, the following original algorithm has been developed for calculating
reliability Ri, which is based on Bellman’s principle of optimality and concept of notation.

Let Ni represent the set of all nodes of the tree. Each node from set Ni is joined with the notation
rj which can be temporary r−j or permanent r+j . Permanent notation of the node j ∈ Ni represents
the (maximum) reliability of covering node j from the observed warehouses, i.e., leaves of the tree.
(By definition, the reliability of covering of the leaves (warehouses) equals 1: rq = 1 ∀q ∈ Q) The
temporary notation of node j is the temporary reliability of covering node j. It is always less than or
equal to the permanent notation. In addition to these, the following notations shall be used.

Aj—set of nodes of the successors of node j Aj = Γ (j)
Bl—set of nodes of the predecessors of node l Bl = Γ−1 (l)
S—set of nodes with a permanent notation
N′—set of nodes with a temporary notation
Mi—number of nodes in set

The sets S and N′ are iteratively exchanged.

6. Results

We are observing the case in which we have six possible locations for warehouses out of 75 nodes
in total and one consumer with the demand that should be fulfilled.

Initially, these six locations (nodes) at which the warehouses will be located are randomly
determined. For each consumer, it is necessary to find the elementary path of maximum reliability to
each of the six warehouses. To solve such problems, a modified Dijkstra’s algorithm (Algorithm 1) is
used iteratively for each pair of terminal nodes. The outputs of this algorithm are all paths from the
warehouses to the consumer. The next step is to determine the reliability of covering each consumer
from all warehouses. To solve this problem for the particular consumer, a graph is formed of all
the paths from Algorithm 1. This graph has the structure of a tree in which the consumer is a tree
root and the leaves are warehouses. An example of such a graph is shown in Figure 1, where node
1 indicates the consumer under consideration and nodes 70, 71, 72, 73, 74, and 75 indicate warehouses,
i.e., Q = {70, 71, 72, 73, 74, 75}.

Therefore, the most reliable paths based on modified Dijkstra’s algorithm presented in Section 4
are shown in Figure 1. Furthermore, the reliabilities of the paths between each two nodes that belong
to the observed most reliable path could be seen in the Figure 1. It is known that the reliabilities of
covering the warehouses are r70 = r71 = r72 = r73 = r74 = r75 = 1.
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Algorithm 1 Algorithm for determining the path of maximum reliability

1: Initialization: Initial labels are joined to nodes:

- The first node s is given the permanent label d+ (s) = 1;
- All of the remaining nodes get initial labels d− (j) = 0, ∀j ∈ N\{s};
- i gets a value: i = s

2: We determine set Ai of the nodes following node i, which do not have a permanent label:
Ai = {j |j ∈ Γ (i) ∧ d (j) = d− (j)}.

3: For every j ∈ Ai, it is necessary to determine new temporary labels:
d− (j) = max

{
d− (j) , d+ (i)∗ rij

}
.

4: Out of all of the nodes in the network which are labeled temporary, only one j∗ receives a permanent
label, and it is the one for which:
d (j∗)→ d+ (j∗) ; j∗ : d− (j) = max

j∈N
{d− (j)}, so d+(j∗) = d−(j∗).

5: We verify whether j∗ = t, i.e., whether the ending node is marked with a permanent label. If not,
we place that i = j∗ and return to step 2. If it is, the reliability of the path d∗ (t) has been determined,
thus it is necessary to reconstruct the path of maximal reliability through which we reached t
from s.

6: The path of maximal reliability p = (s, j1, j2, ..., jk, t) is determined by moving backwards from
node t towards node s: t→ jk → jk−1 → ...→ s therefore:
jk : d+ (t) /d+ (jk) = rjkt jk−1 : d+ (jk) /d+ (jk+1) = rjk−1 jk . . . d+ (j1) /d+ (s) = rsj1

7: It is evident that d+ (t) = rsj1 ∗ rj1 j2 ∗ . . . ∗ rjk−1 jk ∗ rjkt.

To calculate the reliability of covering of each node (consumer) that is on the most reliable path
from the warehouse to the consumer, we use Algorithm 2. By using the program based on this
algorithm, we can calculate the coverage of the nodes as presented in Table 1.

Algorithm 2 Algorithm for calculating the reliability of covering a node (k– covering reliability) consists
of the following steps.

1: Initialization
S = Q
N′ = Ni\S
rq = r+q = 1 ∀ q ∈ Q
rj = r−j = 0 ∀ j ∈ N′

Aj = {l | l ∈ Γ (j) ∧ l ∈ Ni} , ∀ j ∈ Ni

2: From the set of unlabeled nodes N′ it is necessary to determine the set of nodes whose successors
are all permanently labeled. It is necessary to firstly determine the set of all nodes which precede
the permanently labeled nodes:
B =

{
l
∣∣l ∈ Γ−1 (S) ∧ ∀l ∈ N′

}
,

then out of those, we take the nodes whose successors are all permanently labeled:
A = {j | j ∈ Bi ∧ Γ (j) ∈ S}

3: Calculate the reliability of node j:
rj = ∑(l∈Aj)

rjlrl −∑(l∈Aj) ∑(k∈Aj)
rjlrlrjkrk+

∑(l∈Aj) ∑(k∈Aj) ∑(z∈Aj)
rjlrlrjkrkrlzrz − . . . + (−1)Mi−1 ∏Mi

(t∈Aj)
rjtrt ∀j ∈ A

Change the notations of these nodes into permanent ones: rj = r+j
4: Update the set of permanently labeled nodes: S = S ∪ A
5: Determine the set of unlabeled nodes: N′ = Ni\S
6: If N′ = ∅, return to step 2. If it is equal, proceed to step

7: The end.
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Figure 1. The graph of the most reliable paths from the warehouses to the consumer.

Table 1. Reliability of the node coverage.

Node Reliability Node Reliability Node Reliablility
(Consumer) of Coverage (Consumer) of Coverage (Consumer) of Coverage

1 0.996552 27 0.978408 52 0.965554
2 0.997648 28 0.994217 53 0.963486
4 0.978690 29 0.996387 55 0.907941
6 0.992071 34 0.967538 56 0.995995
8 0.963380 35 0.978891 59 0.809900

10 0.996895 37 0.922723 61 0.890000
13 0.974848 39 0.988110 62 0.986056
15 0.993923 43 0.837943 63 0.880000
16 0.977808 45 0.975543 65 0.790000
19 0.969589 47 0.957928 67 0.910000
20 0.964647 48 0.997706 69 0.890000
22 0.992574 49 0.952207
26 0.880459 50 0.994682
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7. Discussion

The described problem can be observed as a subproblem of the problem of determining the
location of k warehouse to maximize the system reliability. The problem can be observed as a problem
of maximum covering of the nodes in the graph, when the probabilities of covering each pair of
adjacent nodes are known, i.e., the reliability of each branch of the graph is known. The system
reliability is equal to the reliability of covering nodes with the minimal reliability. In the same manner,
it is possible to determine the reliability of the system when the warehouses are placed in some other
k nodes. If we were to examine all possible warehouse locations, then, based on that, we would
select the particular combination of k warehouses for which the reliability of the system would be
maximal. Based on the characteristics of the optimization task, it can be concluded that it is necessary
to formulate a relaxed problem, towards which further research would lead.

8. Conclusions

This paper shows how it is possible to determine the most reliable paths between any two nodes
of a graph and determine their reliability. A known modification of Dijkstra’s algorithm for the solution
of this problem has been described. The results of this algorithm are used as input data for solving the
problem of determining the reliability of covering a node from a predefined number of location nodes.
Finally, an algorithm has been formulated for determining the reliability of covering each node from a
predetermined number of nodes.

Variables of this problem are integer, so this is a combinatorial problem. The objective function
is not given analytically, so it has to be calculated numerically. Constraints arise from topological
characteristics and define locations on the graph. The only constraint is a given number of nodes,
i.e., facilities. For further research, we will consider to formulate a relaxed problem and solve it using
some of the available software or to develop a heuristic algorithm or apply some of the metaheuristics.
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