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Multivariate and multi-scale generator based on

non-parametric stochastic algorithms

Ðurica Marković, Siniša Ilić, Dragutin Pavlović, Jasna Plavšić

and Nesa Ilich
ABSTRACT
A method for generating combined multivariate time series at multiple locations and at different time

scales is presented. The procedure is based on three steps: first, the Monte Carlo method generation

of data with statistical properties as close as possible to the observed series; second, the

rearrangement of the order of simulated data in the series to achieve target correlations; and third,

the permutation of series for correlation adjustment between consecutive years. The method is non-

parametric and retains, to a satisfactory degree, the properties of the observed time series at the

selected simulation time scale and at coarser time scales. The new approach is tested on two case

studies, where it is applied to the log-transformed streamflow and precipitation at weekly and

monthly time scales. Special attention is given to the extrapolation of non-parametric cumulative

frequency distributions in their tail zones. The results show a good agreement of stochastic

properties between the simulated and observed data. For example, for one of the case studies, the

average relative errors of the observed and simulated weekly precipitation and streamflow statistics

(up to skewness coefficient) are in the range of 0.1–9.2% and 0–5.4%, respectively.
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INTRODUCTION
Long hydrologic time series are required for effective water

resources system planning, design, and operation. However,

those are often too short, unreliable, or non-existent. In

these situations, various methods can be used for generating

synthetic time series of sufficient length with richer regimes

(e.g., containing more extreme values compared to those

found in short observed series), while keeping the existing

statistical properties of the original series intact. The

majority of these methods have been used to generate a

single type of time series, e.g., streamflow, precipitation, or

temperature. More recently, there are examples of novel sto-

chastic simulation methods capable of dealing with

multivariate stationary or cyclo-stationary processes of any

time scale with any marginal distribution and correlation
structure. Some of these methods are based on a non-para-

metric approach (Ilich ; Srivastav & Simonovic ),

and some are based on a parametric approach (Tsoukalas

et al. a, b; Kossieris et al. ).

Hazen () was probably the first to use the notion of

synthetic time series in hydrology. He generated a 300-year

long synthetic hydrologic series combining data from 14

watercourses. Since then, many other approaches emerged

for a hydrologic series generation.

Generating a time-dependent hydrologic series is much

more complex than generating independent series since its

goal is to preserve not only the statistical distribution func-

tion of the original sample but also its autocorrelation

function for all significant lags. The well-known model by
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Thomas & Fiering () with serially correlated flows was

the first model of this kind used for monthly flow generation

at a single site. This type of model reproduces the essential

statistical characteristics of the series but may lead to unrea-

listic dependence patterns when combined with non-

Gaussian white noise (Tsoukalas et al. c). The problem

becomes more difficult for the multivariate and/or multisite

generation (e.g., streamflows at multiple gauging stations or

streamflows and precipitation) where the interstation depen-

dence (i.e., cross-correlation) has also to be preserved in the

generated series. The first multisite stochastic flow gener-

ation model was developed by Fiering ().

A number of models for stochastic hydrological time

series generation are based on a stochastic processes

approach, such as the autoregressive moving average

(ARMA) models (Box & Jenkins ). Despite the advan-

tages of the autoregressive and the moving average group

of models (including ARMA and autoregressive integrated

moving average (ARIMA)), they suffer from the ‘short

memory’ problems, meaning that the serial correlation func-

tion quickly diminishes with the time lag (Koutsoyiannis

). This approach involves the simultaneous fitting of a

large number of parameters related to the joint marginal

probability distribution functions in order to comply with

the spatial and temporal covariance structure of the shorter

historic time series. A detailed review of the application of

the Box–Jenkins approach in hydrology is presented by

Salas et al. (). However, recent papers (Tsoukalas

et al. a, b) introduce methods that can be used for

the simulation of non-Gaussian univariate and multivariate

stationary processes capable of preserving any correlation

structure and marginal distribution at any scale. The

method was also applied for simulating a non-physical pro-

cess (water demand) at fine scales from 1 h up to 1 min

(Kossieris et al. ).

In the last 20 years, many authors have developed the

non-parametric methods for simulating hydrological pro-

cesses. This became possible by the emergence of new

mathematical procedures and methods, and the advances

in computational power and software tools. The methods

mostly used are the moving block bootstrap (Srinivas &

Srinivasan ), K-nearest neighbour (K-NN; Sharif &

Burn , ), or kernel-based methods (Sharma et al.

). The main advantage of these methods is that they
://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
do not rely on the parameter estimates, while they suffer

from the inability to extrapolate the probability distribution

beyond the observed data.

Multisite streamflow series generation requires a sto-

chastic model capable of reproducing the relevant

statistical characteristics of the observed data series. Ideally,

the model should be capable of working with selected time

discretization (e.g., day, week, or month) and also preserve

the key statistical characteristics at coarser time scales

(e.g., annual). Furthermore, it should be able to extrapolate

sensibly the distribution tails for a particular time discretiza-

tion. Finally, the model also needs to preserve the serial and

cross-correlation structure for each time scale, as well as the

intra-annual cycle. All these requirements were discussed in

detail by Moran (), Salas et al. (), Koutsoyiannis

(), and Srinivas & Srinivasan ().

Stochastic methods are also used for generating precipi-

tation time series. As precipitation is generally modelled as

an intermittent stochastic process, the models need to simu-

late both precipitation occurrence and intensities/depths in

time. Compared to streamflow generation methods, they

have to reproduce additional observed data characteristics,

such as precipitation occurrence, duration, or the distri-

bution of consecutive wet and dry days. Modelling

intensities/depths in stochastic precipitation models is

identical to modelling streamflow distributions. For the

occurrence of dry and wet spells, two types of models are

commonly used: Markov chain or renewal process based

(Wilks & Wilby ). Those based on the Markov chains

are often used to specify the state of each spell as wet or

dry. These models have been applied to data from various

climatic regions and series lengths; however, the structure

of the model has to be adjusted to the local conditions for

each case study. In addition to the above-mentioned two-

part models, resampling models, transition probability

matrix models, and modifications of ARMA-type models

(e.g., using normalization transformations or non-Gaussian

white noise) are also used for generating rainfall (Srikanthan

& McMahon ). A good review of the topic is given by

Srikanthan & McMahon (), Haberlandt et al. (),

and Serinaldi & Kilsby ().

Harrold et al. (a, b) used the non-parametric

approach for modelling single-site daily rainfall occurrences

and rainfall amounts for a 140-year long rainfall record at
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Sydney, Australia. Their rainfall simulation model is based

on the K-NN resampling method, where the Markov model

was used to generate sequences of dry and wet states

(Harrold et al. a). The model preserves short- and long-

term time series characteristics, i.e., seasonal, annual, and

multi-annual properties of observed data series. Mehrotra

et al. () also applied a multisite K-NN model for precipi-

tation generation at 30 stations in Australia, along with other

two parametric generators, while Basinger et al. () used a

non-parametric procedure based on bootstrapped Markov

chains for precipitation occurrence and resampling from

observed data for precipitation amounts.

In addition to the methods for generating single-variate

hydrometeorological series, there is a need to develop

approaches for generating multivariate series. Such a stochas-

tic model is developed by Srivastav & Simonovic (, );

this model uses the maximum entropy principle and the boot-

strap method to generate multiple variables at multiple sites.

It reproduces data statistics, keeping the spatial and temporal

structure of data interdependence. The bootstrap method is

implemented through the K-NN approach for data gener-

ation. The model is tested on daily data (precipitation,

maximum, and minimum air temperature) from 22 gauging

stations in the Thames River catchment (Ontario, Canada).

However, the method does not preserve the serial correlation

between two consecutive years.

Unlike in some water resources areas related to model-

ling, such as river hydraulics, where there are universally

accepted modelling tools, such as HEC-RAS, there is no

similar tool in stochastic hydrology, i.e., there is no univer-

sally accepted multivariate time series generation model

for simultaneous modelling of flows and precipitation that

is widely used by hydrologists around the world. In the

works by Ilich & Despotovic (), Ilich (), and

Marković et al. (), a different approach to the generation

of stochastic streamflow series is developed that presents an

essential departure from the previously established methods.

The proposed method consists of three steps: (1) indepen-

dent data sets for the given time step are generated using

the Monte Carlo method, in which the statistical distribution

functions of the observed series are fully maintained, (2)

data from the individual data sets are then rearranged to

induce serial and cross-correlation coefficients of the

observed series, and (3) annual streamflows are rearranged
om http://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
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to adjust their serial correlation for time intervals that

cross-connect two consecutive years. Such an approach

has not been proposed by other studies. Moreover, to our

best knowledge, other approaches do not deal explicitly

with correlation between data in the transition from one

year to another, which is, in our methodology, done in

Step 3 by re-ordering whole years in the generated weekly/

monthly series. Ilich & Despotovic () have applied

this methodology to weekly streamflows. Ilich () has

introduced the intermittent precipitation series along with

the continuous weekly streamflow series in the simulation

procedure. Marković et al. () made further improve-

ments in order to enhance the method’s performance by

employing the logarithmic transformation to data in order

to reduce skewness coefficient and the effect of outliers

and by including additional control to simulate the persist-

ence of extremely low summer and autumn flows in dry

years.

This paper builds on the previous work of Ilich &

Despotovic (), Ilich (), and Marković et al. ()

by expanding the methodology for combined generation of

streamflow and precipitation time series. The improvement

of the methodology lies in introducing a new method for

the extrapolation of distribution tails, which is different

from the use of parametric distributions in Ilich & Despotovic

() and Ilich (). The main advantages of the proposed

methodology are: (1) starting from the shortest time step

considered, the methodology ensures that statistics are pre-

served for all larger steps, (2) the method preserves the

serial correlation between two consecutive years, (3) both

continuous and intermittent time series can be generated,

and (4) the procedure is completely automated with a set

of default agreement criteria. The application of the method-

ology in this paper includes streamflow and precipitation

data in Canada and Serbia, but the method can be used

for any combination of hydrologic and/or weather variables.

While Marković et al. () generated streamflow data for

both Canada and Serbia, in this paper streamflow and pre-

cipitation data are jointly generated. By comparing these

two sets of results, the efficiency of the generating algorithm

is evaluated in terms of multivariate applications.

The next section gives an overview of the proposed

methodology. It is followed by its application to two data

sets of weekly flows, one from Serbia (three hydrologic
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stations and one meteorological station) and one from

Canada (seven hydrologic stations and four meteorological

stations). The last section provides discussion and con-

clusions with recommendations for further improvements.
METHODOLOGY

Hydrological time series represent continuous natural pro-

cesses and are defined in practical applications in a discrete

form of average flows or total precipitation for a selected

time scale, such as day, week, or month. They are modelled

as stochastic processes characterized by probability distri-

butions and low-order summary statistics (i.e., mean,

variance, and skewness coefficient), and correlation structures.

The non-parametric stochastic generation method used

in this study is formulated so as to respect the principle

that the generated synthetic series should have distribution

functions and a correlation structure very similar to those

of the observed series. In order to achieve this, statistics

such as the mean, standard deviation, and skew at each

time step should be preserved in the generated series, and

the serial and cross-correlations should match the observed

for any significant lag. Annual statistics of the simulated

series, such as the annual mean, standard deviation, and

serial and cross-correlations, should also match the annual

statistics of the observed series.

The procedure of stochastic streamflow generation relies

on the assumptions that observed data represent the natural

hydrologic regime. This means that it should be free from

any effects of regulation, such as an upstream reservoir oper-

ation or diversion structures, and that the observed process

at each time step has a unique statistical distribution that

should be matched in the simulated series. This distribution

function can be represented either by a theoretical para-

metric distribution that fits the data well or by using an

empirical distribution, such as the non-parametric kernel-

based distributions. The reason for using the non-parametric

probability distributions is to avoid specifying any particular

parametric distribution in the data generation process. A

possible probability distribution model can be based on

combining the non-parametric approach within the range

of the observed data with a parametric distribution at tails,

with smoothed inter-range transitions (Ilich ).
://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
The observed data that represent the input for the gener-

ation procedure are organized in a matrix X, as shown in

Figure SM1 in the Supplementary Material. The number of

rows in the matrix is equal to the number of years n in the

record. This matrix consists of K blocks of columns for each

of the K stations considered. If, for example, weekly data

are considered, each column in a block contains streamflow

series for 1week. ForK stations, the total number of variables,

i.e., columns in matrix X, is M¼ 52 K for weekly data or

M¼ 12 K for monthly data. Thus, the matrix X is given with:

X ¼ [xij], i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , M (1)

The columns Xj (j ¼ 1, 2, . . . , M) of the matrix X

represent the series for each selected time step:

Xj ¼ [xij], i ¼ 1, 2, . . . , n (2)

For the given input matrix X, the correlation matrix C of

size M ×M contains correlation coefficients ρij between two

columns Xi and Xj (see Figure SM2 in the Supplementary

Material):

ρij ¼ Corr(Xi, Xj), i, j ¼ 1, 2, . . . , M (3)

Diagonal elements ρij, when i¼ j, are equal to 1. Non-

diagonal elements of matrix C represent either serial corre-

lation coefficients (for a single station) or cross-correlation

coefficients (interstation dependence). For example, for

weekly data, ρ1,20 is the serial correlation between flows in

1st and 20th week at station 1, while ρ2,72 is the cross-corre-

lation between the 2nd week flow at station 1 and the 20th

week flow at station 2.

The three steps of the proposed procedure for data

generation are described in the sequel providing a basic

theoretical background for each step (the full details are pre-

sented in Marković et al. ()) and using the pseudo-codes

to clarify the method. The procedure is described for weekly

flows, but it is equally valid for other temporal discretizations.

Step 1 – generation of independent data sets

The first step is to generate N years of random weekly data

having the statistical distributions for each time step as close

as possible to the target statistics of the historical series



Figure 1 | Extrapolation of distribution tails applied in the model; the observed Ymin and

Ymax are connected to randomly selected points (crosses) from the 90%

confidence interval of 0.1% and 99.9% GEV quantiles.
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represented in the matrix X of size n ×M, where n is the

number of years of the observed data and M is the total

number of columns (i.e., M¼ 52 K for K stations). This

step includes compiling the observed series and their log-

transformation (to mitigate the skewness intrinsic in the

data), defining the target statistics (observed mean value,

standard deviation, and coefficient of skewness) in the log-

space for each week at every station, and then running the

Monte Carlo procedure for generating data from the

observed distributions. In order to avoid the logarithm of

zero, log-transformation of zero precipitation is increased

by a constant of 1 mm. For basins exhibiting zero flows,

the same would be applied. Generated data from this step

are stored in the resulting matrix G of the generated inde-

pendent data sets, which has M columns and N rows (in

our study, N¼ 1,000), but in general N can be as large as

necessary.

The probability distributions of the observed data for

each week are defined using the non-parametric kernel

approach combined with an extrapolation algorithm for

the distribution tails. The advantage of the non-parametric

approach is that it lends itself to a completely automatic pro-

cedure, which is a desirable feature. However, the non-

parametric kernel distributions perform poorly outside the

range of the observed data. The idea for distribution func-

tion extrapolation in the tail sections in this article

originates from the work of Scholz (). This extrapolation

method linearizes distribution tails by utilizing linear depen-

dence of a variate (e.g., streamflow) on the standard variate

of a theoretical distribution when plotted on a probability

paper. However, depending on the sample data and the

existence of outliers, extrapolating the lower tail could pro-

duce negative values, while extrapolating the upper tail

could yield generated values much greater than the maxi-

mum observed value. Both cases are undesirable.

To overcome the drawbacks of Scholz’s approach, a

different heuristic algorithm is applied here for extrapolat-

ing the distribution tails. The linear extrapolation is

applied to the log-transformed variate Y¼ ln X plotted

against the standard normal variate z (Figure 1). The devel-

oped algorithm assumes that the upper and lower tail

extrapolating lines must lie within the confidence interval

of the observed distribution. However, the confidence

interval of the non-parametric distribution function
om http://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
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cannot be constructed outside of the observed data range.

For this reason, the confidence interval limits outside of

the observed range are estimated by assuming the general

extreme value (GEV) distribution. The GEV parameters

are estimated by the method of L-moments for each

observed weekly series according to the formulae given

by Rao & Hamed (). Each extrapolation line is deter-

mined by two points (Figure 1). At the lower tail, the first

point is defined by the log-transformed minimum observed

value Ymin, and the second point is a randomly selected

value Y1 from the 90% confidence interval of the 0.1%

GEV quantile (i.e., for the cumulative distribution function

(CDF) or CDF value of 0.1% or standard normal variate

z¼�3.09). Similarly, at the upper tail, the first point is

the log-transformed maximum observed value Ymax, and

the second point is a randomly selected value Y2 from

the 90% confidence interval of the 99.9% GEV quantile

(with z¼ 3.09). The ‘randomness’ of the choice of the

points Y1 and Y2 from the 90% confidence interval (Il,

Iu) is restricted by the logical conditions: Y1 cannot be

greater than Ymin and Y2 cannot be smaller than Ymax.

These constraints can be formalized as:

Il(0:001)< Y1 <min {Ymin, Iu(0:001)} (4)

max {Ymax, Il(0:999)}< Y2 < Iu(0:999) (5)
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The random values Y1 and Y2 are obtained from the

restricted ranges given in Equations (4) and (5) by multiply-

ing the range span by the uniformly distributed random

number from the [0,1] interval and by adding the product

to the lower range limit Il(0:999) at the upper tail, or sub-

tracting it from the upper limit Iu(0:001) at the lower tail.

The outermost points (i.e., selected GEV quantiles) are lin-

early connected to the log-transformed minimum and

maximum observed values Ymin and Ymax. These linear

dependencies on the log-normal probability plot are used

for random sampling outside the observed data range (as

shown in Figure 1).

The algorithm for Step 1 is presented by the pseudo-

code for Step 1, which generates M data vectors by

random sampling from the non-parametric distributions of

the observed vectors using the pre-set criteria for agreement

of the observed and simulated data statistics (mean, var-

iance, and skewness). The generation process ends when

the generated statistics are close enough to the observed

ones, as defined by specified criteria for each statistic. We

have chosen to restrain the error in mean logarithmic

flows to 0.001 (corresponding to an error of 0.1% in the orig-

inal data space) for generating the first 10,000 data. If a

desired mean value is not obtained from the first 10,000

data, the tolerance limit is relaxed to 0.003. Similarly, the

tolerance limit in the skew of the logarithmic flows is 0.03

or 0.05 after 10,000 simulations.

Algorithm 1: Pseudo-code for Step 1 – generating random data
vectors
1:
://iwaponline.c
Load n years of historical data in matrix X (size n ×M)
2:
 Pre-process X (perform logarithmic transformation and
sort each column independently) and store in matrix
XLS
3:
 Initialize output matrix G (size N ×M) for N years of
generated uncorrelated data (gij¼ 0)
4:
 for j¼ 1 to M // for each column vector j in XLS
5:
 calculate the observed ratio of zero values p0 in column j
6:
 calculate target statistics for non-zero values
7:
 define target CDF by calculating observed non-
parametric CDF and extrapolating the tails from data
in column j
8:
 for i¼ 1 to N // for each year i to be generated
om/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
9:
 generate random number u from the range (0, 1)
10:
 if (u< p0) then gij¼ 0
else gij¼ inverse of target CDF for u
11:
 end for (next i) // generated data vector Gj created
12:
 calculate statistics for non-zero values in the generated
vector Gj
13:
 if statistics for Gj match target statistics then continue
to line 23 (next j);
14:
 else
15:
 set new count k¼ 1; set maximum number of
iterations
16:
 while statistics do not match target statistics or
maximum number of iterations is reached
17:
 generate new data value gg (like in lines 9–11)
18:
 create trial data vector Gj by replacing gkj by gg
19:
 calculate new statistics for non-zero values in trial
data vector Gj
20:
 if new statistics are better than old statistics then
approve a replacement on kth position and set the new
statistics is target statistics
21:
 else continue generation process with k¼ k þ1
(go to line 16)
22:
 end while
23:
 end for (next j)
24:
 post-process data in G from log-transformed to original
data space
If the generated series does not fulfil the specified cri-

teria after the first N simulations, the algorithm would

continue to generate the (Nþ 1)st data value and to evaluate

statistics of the series in the range [2, Nþ 1] by comparing it

to those of the series in the range [1, N ]. The process of gen-

erating one additional data value and sequential comparison

of updated generated statistics with the observed ones is

continued for each data vector until the specified criterion

is met. At the end of the process, N years of log-transformed

data are generated for each data vector, having the marginal

distribution that corresponds to that of the observed vector.

The generated series are then transformed back from the log

space to the original data space and stored in matrix G.

Generating precipitation data takes into account that

precipitation is an intermittent process and that the CDF

F(x) of a precipitation vector consists of two parts: prob-

ability p0 of zero precipitation in one time interval (i.e.,

dry interval occurrence) and the conditional CDF of precipi-

tation depth during the wet interval F1(x) weighted by the
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wet interval probability (1–p0):

F(x) ¼ p0 þ (1� p0) � F1(x) (6)

Generating precipitation data, therefore, has two stages:

(1) assessing the dry interval probability p0 and the distri-

bution of precipitation depths in wet intervals F1(x) from

the observed data and (2) random sampling of precipitation

depths by sampling a random number u from the uniform

[0,1] distribution, evaluating F1 that satisfies Equation (6)

for F(x)¼ u, and finally estimating the corresponding pre-

cipitation depth quantile as xu ¼ F�1
1 [(u� p0)=(1� p0)]:

The remaining procedure is identical to generating stream-

flow data.
Step 2 – adjusting the correlation structure

of the generated series

The data vectors generated in Step 1 for each week or month

represent uncorrelated streamflow or precipitation series,

but they should also have the appropriate correlation struc-

ture of the observed series in order to describe realistically

the natural hydrologic or precipitation regime at given

locations. The correlation structure includes the serial corre-

lation between weekly and monthly data at each site and

cross-correlation between the sites. In the case of stream-

flows, it is also important that the persistence of low flows

within an extremely dry year is maintained in the generated

time series, leading to the occurrence of extremely low

annual flow.

The algorithm for Step 2 is divided into two parts. The

first part deals with data rearrangement to match the corre-

lation of the observed weekly data (Algorithm 2.1), while the

second part serves two purposes: it improves the fit between

the distributions of the observed and generated annual

minima and allows user to control the fraction of extremely

dry years in the generated data set (Algorithm 2.2).
Algorithm 2.1: Pseudo-code for the first part of Step 2 – adjusting
the correlation structure
25:
om http://iwap

er 2022
load matrices X and G from Step 1
26:
 for M column vectors in matrix X, calculate correlation
matrix C (of size M ×M) end for
online.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
27:
 if C is not a positive definite matrix, then calculate the
closest positive definite matrix and store it in C
28:
 apply the Iman–Conover method to rearrange elements
in G with a correlation matrix closest to C
Algorithm 2.2: Pseudo-code for the second part of Step 2 –

adjusting extremely dry years
29:
 set the number nd of extremely dry years in generated
data
30:
 for each station
31:
 create vector AO of annual sums of observed weekly
data in X for n years
32:
 create vector AG of annual sums of generated weekly
data in G for N years
33:
 find the smallest value AOmin in AO
34:
 find the smallest nd values in AG and their positions
IAG
35:
 for i¼ 1 to nd // perform a loop with respect to
indices IAG in G
36:
 while AG(IAGi)>AOmin // while generated annual
sum in row IAGi is greater than the minimum
observed annual sum
37:
 find column j with the maximum value in row
IAGi of G and store data cell position pos1
38:
 find row k with the minimum value in column j of
G and store data cell position pos2
39:
 swap the values between positions pos1 and pos2
40:
 recalculate AG(IAGi)
41:
 end while
42:
 end for (next i)
43:
 end for (next station)
In the first part of Step 2, the algorithm of Iman and

Conover (ICA) (Iman & Conover ) is used for data per-

mutations within the generated vectors to achieve target

correlation structure. The matrix G resulting from Step 1

is the input for the algorithm, and its columns are the

series to be rearranged. The observed data matrix X is

used here to calculate the observed correlation matrix C,

which is set as a target correlation matrix for ICA. The

ICA application was presented in detail in Marković et al.

().

Considering that the purpose of the proposed stochastic

method is to provide input for the optimal design of reser-

voir storage and/or optimal reservoir operation, it is

important that the generated series covers a wide range of
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input data and includes events that could be critical for

reservoir operation, such as long droughts. These events

from the lower or the upper tail of flow distributions are

not present in the observed series but are expected to

emerge within N years, which is usually much greater than

the number of years with observations. The critical events

are very wet or dry years. The dry years with the total

annual runoff below the observed minimum are more criti-

cal for water allocation. Although the methodology

generally yields the minimum generated streamflow lower

than the minimum weekly observed ones, the previously

described rearrangement for achieving the target correlation

structure may not produce a series with extremely dry

year(s) in which low flows persist over longer durations.

For this reason, the algorithm of Ilich () is upgraded

for additional rearrangement of the simulated data set so

that it contains a number of extremely dry years. This is

achieved by additional swaps of the smallest weekly flows,

while keeping previously achieved correlation structure, as

explained by Marković et al. () and shown in Algorithm

2.2 (code lines 35–42). One additional rearrangement yields

one extremely dry year, but the procedure can be repeated

for an arbitrary number nd of extremely dry years with nd
smallest annual flows. The same procedure of additional

rearrangement can be applied for the extreme wet years if

they are of interest for the reservoir operation management.

Step 3 – adjusting the correlation of weekly flows from

one year to another and of mean annual flows

Serial correlation of weekly or monthly hydrologic time

series for different lags should not only be preserved

within one year but also from one year to another. For

example, flows in weeks 1, 2, etc. in a year are dependent

on flows in weeks 50, 51, and 52 from the previous year.

Such correlations in the observed data should, therefore,

be reflected in the generated data. Also, annual streamflows

also exhibit correlations that should be maintained in the

generated series. These two requirements can be achieved

by rearranging complete years (i.e., rows in matrix G) with

already arranged weekly streamflows (Ilich & Despotovic

). By doing so in Step 3 of the methodology, the gener-

ated random variates are effectively converted into time

series with the required correlation structure.
://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
Algorithm 3 shows the pseudo-code for rearranging

generated data to adjust the serial correlation of weekly

data in the transition from one year to another and to

adjust the serial correlation of the aggregated annual

data. If s represents the index of the last time interval in

a year (s¼ 52 for weekly data), then for any station from

the given data set ρs,1 is the observed serial correlation

coefficient between the 52nd week of the current year

and the 1st week of the next year. Similarly, ρs�1,1 describes

the correlation between week 51 in the current year and

week 1 in the next year, etc. Performing an additional

rearrangement to adjust serial correlation over the time

index range [s – 1, 2] accounts for two time lags. The

rearrangement criterion for station k is to minimize the

statistic Dk representing the sum of squared differences

between observed and simulated transitional correlations

up to lag 2 (Ilich & Despotovic ):

Dk ¼ (ρGs�1,1 � ρs�1,1)
2 þ (ρGs,1 � ρs,1)

2 þ (ρGs,2 � ρs,2)
2 (7)

where G denotes correlation coefficients in the generated

data. The above statistic can be expanded to include corre-

lations for any number L of weeks at the end and the

beginning of the year.

The correlation structure of the observed annual flows

or precipitation also has to be preserved in the simulated

series. Similarly, if RAOl and RAGl denote annual serial cor-

relation coefficients for lag l for the observed and generated

data sets, respectively, the criteria Dk can be expanded by

the term, which measures the goodness of fit of the annual

serial correlations up to lag m:

Dk ¼
XL

p¼1

Xs

q¼s�Lþp

(ρkGq,p � ρkq,p)
2 þ

Xm

l¼1

(RAOk
l � RAGk

l )
2 (8)

where q and p are indices of weeks in the transition from

one year to another, and s is the number of weeks in a

year. The serial correlation of weekly data can generally

be adjusted up to an arbitrary lag L, while the annual

serial correlation is adjusted up to the lag m¼N/4,

where N is the number of data years in the observed

series, as recommended by Box & Jenkins (). For all
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gauging stations, composite criteria statistic can be intro-

duced as the sum of all Dk values, where K is the

number of stations:

D ¼
XK

k¼1

Dk (9)

The rearrangement of rows in matrix G is performed

until D is sufficiently small, i.e., smaller than a pre-set

value D0. To find an appropriate order of years (i.e., rows

in matrix G) that satisfies the transitional weekly and

annual correlations, the algorithm in this step combines

forward and backward searches for substitute rows, starting

from the first and the last rows of G simultaneously. The

algorithm stops at the first encounter of satisfied criteria

for statistic D.
Algorithm 3: Pseudo-code for Step 3 – adjusting transitional
weekly correlation and annual correlation
44:
om http://

er 2022
load matrices X and G from Step 2
45:
 set the value for the number L of ending/starting weeks in a
year to be included in the adjustment
46:
 set the value for the number m of lags in annual serial
correlation function to be included in the adjustment
47:
 set the value for the tolerance limit D0 for the criteria statistic D
48:
 for each station k of K
49:
 find transitional weekly correlations:
50:
 from X extract L last columns with rows from 1 to n – 1
and L first columns with rows from 2 to n
51:
 from G extract L last columns with rows from 1 to
N – 1 and L last columns with rows from 2 to N
52:
 calculate L(Lþ 1)/2 correlation coefficients rho_qp
between the extracted columns in each: X and G
53:
 calculate D1(k) as the sum of differences between
observed and generated rho_qp for all lags
54:
 find annual correlations:
55:
 create vector AO of annual sums of observed weekly
data in X for n years
56:
 create vector AG of annual sums of generated weekly
data in G for N years
57:
 calculate autocorrelation functions RAO and RAG of
observed/generated annual data up to lag m
58:
 calculate D2(k) as the square sum of differences between
RAO and RAG for all lags
59:
 end for (next station)
60:
 calculate statistic D¼D1þD2
iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
61:
 start rearrangement algorithm on matrix G: set initial best
statistic DB¼D
62:
 for i_asc¼ first year to last year with increment þ1
63:
 for i_desc¼ last year to first year with increment �1
64:
 if i_asc <> i_desc
65:
 trial swap of data values between rows i_asc and
i_desc
66:
 recalculate correlation coefficients and statistic D
67:
 if D<DB then accept trial swap and set DB¼D
68:
 if DB<D0 then break
69:
 end if // i_asc <> i_desc
70:
 end for (next i_desc)
71:
 end for (next i_asc)
APPLICATION

Models and data sets

The presented method for multivariate, multisite, and multi-

temporal stochastic hydrologic generation is applied to two

data sets, one from Serbia and one from Canada, consisting

of streamflow and precipitation data series from a different

number of stations. For both data sets, two models are

applied: (1) model for the generation of streamflow series,

denoted here as MG-Q, and (2) model for the generation

of streamflow and precipitation series, denoted as MG-QP.

Both models are applied for two time scales: weekly and

monthly (symbolized by letters w and m, respectively; e.g.,

MG-Q(w) is the model for generating streamflows on a

weekly scale).

The Serbian data set comprises daily data from three

hydrologic stations (Devići, Mlanča, and Ušće) on the

Studenica River and meteorological station Kraljevo with

the precipitation data (upper part of Figure 2). The stream-

flow data represent natural flows because there are no

water control facilities on the Studenica River. Before the

application, data were subjected to quality control pro-

cedures. Minor gaps were filled using the regression

analysis with other stations. The record is 49 years long

from 1964 to 2012.

The Canadian study region is the Oldman River in

Southern Alberta with two of its tributaries, Waterton

River and St Mary River (lower part of Figure 2).



Figure 2 | The map of the study area in Serbia (top) and Canada (bottom) – short codes and full names for the stations used in the model application.
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Naturalized weekly flows were obtained from Alberta

Environment’s natural flow database, with an available

record from 1912 to 2001 and for precipitation from 1928

to 2001. Ilich () used this data set as an example for

his original procedure. Table SM1 in the Supplementary

Material summarizes the information for all stations.

The presented method for multivariate stochastic gener-

ation is coded in the MATLAB environment according to

Algorithms 1, 2, and 3 and executed on various computing

machines from laptop to desktop PCs. Our experience is

that the execution is substantially dependant on the

number of variables that are of interest (streamflows, pre-

cipitation, temperatures, etc.), the number of gauging

stations, and the length of the simulation time step. In the

case of application of the MG-QP model to the Canadian

data set (seven streamflow and four precipitation stations)

at weekly time scale, the computational time is as follows:

1 h for Step 1, 3 min for Step 2, and 20 h for Step 3. Faster

execution would be possible if the code were implemented

in computer languages that can be compiled.

The paper of Marković et al. () presented the results

of simulations involving only the MG-Q model (streamflow

data generation only) for Canadian and Serbian data sets.

This paper presents the results for the MG-QP model that

includes both streamflow and precipitation data from

Canada and Serbia. These two sets of results enable compar-

ing the efficiency of the algorithm in generating streamflows

by taking into account either streamflow dependence struc-

ture only or streamflow–precipitation-dependence structure.

Results

Results for Step 1 – generation of random series

The distributions of the generated weekly vectors obtained

by the MG-QP model are almost identical to the observed

ones. Figure 3(a) shows the empirical distributions of the

observed and simulated 10th-week precipitation for the Ser-

bian precipitation station SP1. For comparison reasons,

some of the most commonly used parametric distribution

functions (Gumbel, Pearson 3, log-Pearson 3, and two-par-

ameter gamma) are also applied to the data in Figure 3(a).

It can be seen that the employed parametric distributions

in this example do not have sufficient flexibility to describe
om http://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf

er 2022
the data at distribution tails, while the non-parametric distri-

butions provide that the generated data have almost the

same empirical distribution as the observed data. Also,

the non-parametric distributions are more appropriate at

the lower tail, where some parametric distributions would

yield negative values. The same results for stations CP1

and S2 are given in Figures SM3 and SM4, leading to the

same conclusions.

The good fit of the distributions of the observed and gen-

erated vectors also leads to a good fit in the vectors’

statistics. The means, standard deviations, and skew coeffi-

cients of weekly precipitation are almost identical for the

observed and simulated series, as shown in plots (b), (c),

and (d) of Figure 3. For example, the relative errors in

mean weekly flows/precipitation data are in the range of

0.2–6.4% for station S1 (mean 2.1%), 0.1–6.2% for station

S2 (mean 2.2%), 0–5.9% for station S3 (mean 2.3%), and

0.1–7.9% for station SP1 (mean 2.7%). Complete results on

errors in means are given in Table SM2, showing that the

errors for the shorter Serbian data set are comparable with

those for the longer Canadian data set.

The generated data sets have greater maxima than

the observed ones, as expected in the longer series

(Figure SM6). Similarly, simulated minimum flows are

smaller than the observed, as shown by Marković et al.

(). With zero being the most frequent minimum value

in the observed precipitation series, the same is the case in

the simulated series. Also, the percentages of zero values

in the observed and the generated precipitation series are

very similar (panel (c) in Figure SM6).

The same conclusions can be made about good repro-

duction of the distributions of observed monthly vectors.

Figure 4 compares these distributions using the box plots.

The errors in mean monthly data are in the range of 0.1–

4.8% for Serbian stations and 0.0–4.4% for Canadian

stations (Table SM3).

Results for Step 2 – serial and cross-correlation

The data rearrangement resulting from the application of the

ICA results in a good fit between the observed and generated

correlation structure. Lag 1 and lag 2 serial correlations for

stations SP1 and S2 are compared in Figure SM7. Equally

good results are obtained for higher lags and all stations. It



Figure 3 | Model MG-QP(w), precipitation station SP1: (a) empirical distributions of the observed and simulated precipitation for week 10 compared to four commonly used distributions

fitted to the observed data; (b–d) observed and simulated means, standard deviations, and skew coefficients of data vectors for each week.

Figure 4 | Model MG-QP(m), box-and-whiskers plot of the observed (white) and simulated (grey) monthly precipitation at meteorological station SP1.
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is important to notice that the algorithm reproduces not

only high correlations but also the small ones, which are

below the significance level. The average and maximum
://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
differences of the observed and simulated correlation coeffi-

cients for weekly data (derived from the correlation matrices

for corresponding data) are 0.035 and 0.273 for Serbian
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stations, respectively, and 0.033 and 0.308 for Canadian

stations, respectively.

For the monthly data, the reproduction of autocorrela-

tion is also good (Figures SM8). The average and maximum

differences of the observed and simulated correlation coeffi-

cients for monthly data are 0.021 and 0.118 for Serbian

data, and 0.022 and 0.169 for Canadian data.
Figure 5 | Model MG-QP(w), comparison of serial correlation functions of the observed

and simulated weekly precipitation at station SP1 (top) and CP1 (bottom).
Results for Step 3 – transitional weekly correlation and
annual correlation

The data rearrangements in Step 3 lead to an adjustment

of the correlation coefficients in the year-to-year transition

and therefore at the end of this step, the generated data

represent the time series with the completely reproduced

autocorrelation function (ACF) of the observed time

series. The simulation results show that the transitional

year-to-year correlations for weekly data are well simu-

lated (Table SM4). The differences between the observed

and generated transitional correlations are generally very

small (in average 0.036), but the greatest differences (up

to 0.383) are attributed to Serbian hydrologic stations.

As a result, the ACFs of the observed and generated

data are in good agreement. The examples of the ACFs

for weekly precipitation are given in Figure 5, showing

that the correlation structure is preserved even for small

correlations close to zero. Similarly, a comparison of the

cross-correlation functions for weekly data at selected

stations (Figures SM9 and SM10) also shows good

agreement.

When aggregated on a coarser temporal scale, the gener-

ated data are comparable to the aggregated observed data in

terms of the annual statistics, distributions, and correlation

structure. This is shown by aggregating generated weekly

data to a 4-week scale and an annual scale. An example of

the observed and simulated annual precipitation distribution

functions is shown in Figure SM11. This figure also illus-

trates the effect of additional treatment at the end of Step

2 over the years with low annual precipitation, which results

in a better agreement of the lower distribution tail.

The main statistics for the weekly streamflow data aggre-

gated to the 4-week scale for one station are presented in

Figure SM12, also showing good agreement. The comparison

of the statistics of the annual streamflows and precipitation
om http://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
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aggregated from weekly data is given in Table SM5, showing

remarkable agreement. Differences in the means do not

exceed 2.3% and 2.9% for Serbian and Canadian stations,

respectively, while the differences in standard deviations

are almost negligible for flows and somewhat greater for pre-

cipitation due to its more random nature.

Serial correlation is also preserved in the aggregated

series. Annual ACFs of weekly precipitation aggregated to

annual scale for two stations are shown in Figure 6.

Statistically insignificant correlations are well reproduced

in the simulated series for up to lag 12. The cross-correlation

of the annually aggregated weekly data is also preserved

(Table SM6). The average and maximum deviations

of the observed and simulated cross-correlations are

0.008 and 0.048 for Serbian data, respectively, while

the corresponding values for the Canadian data are 0.016

and 0.08 (these are slightly greater because more

precipitation stations were included in imposing the corre-

lation structure). Figure SM13 presents ACFs of weekly

data aggregated to the 4-week scale.



Figure 6 | Model MG-QP(w), ACFs of annually aggregated weekly data for stations SP1 (left) and CP1 (right).
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In the 1,000-year long generated series, the annual

extreme values should exceed those found in the observed

series. The generated and the observed annual minima or

maxima should generally be evaluated in terms of their dis-

tributions. To avoid deciding on the goodness of fit of the

theoretical distributions to the observed and generated

data, we compare the ranges of theoretical quantiles

obtained by fitting some of the commonly used theoretical

distributions to both observed and simulated annual data

(we used log-normal, Gumbel, Pearson 3, log-Pearson 3,

and two-parameter gamma distributions). The ranges of

theoretical quantiles of the minimum and maximum

annual weekly streamflows for station C1 are compared in

Figure SM14. The ranges of theoretical quantiles of gener-

ated maxima mostly overlap with those for the observed

maxima, although are somewhat wider. The ranges of theor-

etical quantiles of generated minima also mostly overlap

with those for the observed minima and can be lower than

their observed counterparts for greater probabilities. This

indicates the direction for future improvement of the model.

The effects of the rearrangement algorithms in Steps 2

and 3 can also be seen through marginal improvements in

achieving the dependence structure of the generated data

after Step 1, Step 2, and Step 3. This is illustrated for

weekly ACFs, transitional weekly correlations, and serial

correlation of weekly streamflows aggregated to annual

scale in Figures SM15, SM16, and SM17.

The results for monthly data show equally good agree-

ment of transitional year-to-year correlations (Table SM7)

and complete ACFs (Figure SM18). Comparison of the stat-

istics of the annually aggregated monthly data is shown in

Tables SM8 and SM9.
://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
Comparison of MG-QP and MG-Q models

By comparing the results for the streamflows simulated by

the MG-QP model presented in this paper with the results

of the simulations with the MG-Q model presented in

Marković et al. (), no significant differences in the

model performance can be seen. For example, empirical dis-

tributions of observed and simulated series, observed and

simulated weekly flow means, standard deviations, and

skew coefficients are almost the same for both models

(Figures SM4 and SM5). Also, the relative errors in the

means of weekly streamflows by the MG-Q model range

from 0.0% to 3.65%, which is virtually the same as with

the MG-QP model. Additional comparisons of the results

of two models are given in the Supplementary Material

(Figures SM19, SM20, and SM21), showing that the model

performance is not deteriorated with the introduction of a

greater number of variables and more complicated depen-

dence structure of the multivariate setup.
CONCLUSIONS

This paper presents the development and application of the

stochastic model for generating simultaneous multivariate

hydrological time series for a weekly or monthly temporal

scale. The following are the main characteristics of the pro-

posed methodology:

• It uses non-parametric distributions coupled with the

extrapolation algorithm for data generation and non-

parametric rearrangement algorithms to achieve the

target correlation structure.
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• The heuristic extrapolation algorithm provides a robust

solution for extrapolating tails and allows fully automated

execution of the algorithm.

• The methodology ensures that the empirical statistic

properties of the processes are preserved to a satisfactory

degree at the simulation time scale as well as at coarser

time scales (e.g., by aggregating from weekly to monthly

or annual scale).

• The method preserves the serial correlation on the tran-

sition from one year to another.

• Both continuous and intermittent hydrological time

series can be generated.

• The generation process is based on the log-transformed

data in order to reduce the effect of outliers and avoid

negative generated values.

• The procedure is completely automated with a set of

default agreement criteria.

The results derived from the two independent data sets

(from Serbia and Canada) show that the model can satisfac-

torily reproduce the probability distributions of multivariate

observed series. This is evident from the good match

between the main statistics (mean, variance, and skewness

coefficient) of the generated and the observed data series.

For example, the average relative errors of the observed

and simulated weekly precipitation and streamflow series

are in the range of 0.1–9.2% and 0–5.4%, respectively

(Table SM2), for the Canadian case study. The agreement

is achieved by a careful application of non-parametric prob-

ability distributions on log-transformed observed data and

by using the developed algorithm for the extrapolation of

the non-parametric probability distribution.

The logarithmic transformation of the observed data miti-

gates the influence of outliers and/or skew in data on the

resulting long synthetic data series. The algorithm for the extra-

polation of the non-parametric probability distribution uses the

linear extrapolation of the CDFs using the log-normal prob-

ability plot. The extrapolation is performed in the range of the

90% confidence interval of the GEV probability distribution

for the 1,000-year quantiles. This algorithm enables equally suc-

cessful simultaneous generation of long streamflow and

precipitation series in a hydrologically homogeneous region.

Two model setups that are considered, one based solely

on streamflow data (presented in Marković et al. ())
om http://iwaponline.com/jh/article-pdf/21/6/1102/622912/jh0211102.pdf
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and another based on streamflow and precipitation data

(presented in this paper), generate a series of almost iden-

tical stochastic and marginal characteristics to those

observed.

Further research should go in the direction of algorithm

refinement regarding computational efficiency for a large

number of gauging sites with long records and short time

steps (e.g., daily time step). Another improvement can be

found in the development of a more efficient method for

the optimization algorithm in Step 3.
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