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Abstract This paper investigates the dynamic behaviour of a geometrically nonlinear nanobeam resting on 

the fractional visco-Pasternak foundation and subjected to dynamic axial and transverse loads. The 

fractional-order governing equation of the system is derived and then discretized by using the single-mode 

Galerkin discretization. Corresponding forced Mathieu-Duffing equation is solved by using the perturbation 

multiple time scales method for the weak nonlinearity and by the semi-numerical incremental harmonic 

balance method for the strongly nonlinear case. A comparison of the results from two methods is performed 

in the validation study for the weakly nonlinear case and a fine agreement is achieved. A parametric study 

is performed and the advantages and deficiencies of each method are discussed for order two and three 

superharmonic resonance conditions. The results demonstrate a significant influence of the fractional-

order damping of the visco-Pasternak foundation as well as the nonlocal parameter and external excitation 

load on the frequency response of the system. The proposed methodology can be used in pre-design 

procedures of novel energy harvesting and sensor devices at small scales exhibiting nonlinear dynamic 

behaviour.  

 

Keywords: nanobeams, nonlocal elasticity, fractional damping, nonlinear vibration, multiple scales 

method, incremental harmonic balance 

 

1. Introduction 

 

The nonlinear dynamic behaviour of beam structures was the subject of investigation within the 

scientific community for many years [1, 2]. The approaches to study this problem evolve over the years and 

different analytical perturbation methods [3, 4] or numerical methods [5] were utilized while standard 

beam models were extended by the inclusion of different constitutive relations, excitation forces or 

influences of physical fields [6, 7]. A special class of beam structures is so-called nonlocal beams, where the 
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nonlocal elasticity constitutive equation is employed to consider the small-scale effects [8]. Such nonlocal 

beams are usually referred to in the literature as nanobeams due to the nano-scale dimensions of structures.  

Nonlocal theory was applied for the static [9], dynamic [10] and instability analysis [11] of nanobeams 

with or without considered surface effects. In addition, static, buckling and dynamic behaviour of nonlocal 

and higher order gradient beams was investigated and discussed by Eltaher et al. [12]. In more recent 

studies, previous theoretical observations regarding the size dependent theories for nanoberams were 

applied in the analysis of more complex models of nanosensors [13], perforated beams [14], systems with 

piezoelectric [15] and magneto-thermal [16, 17] effects. 

It is well-known that effects of external medium surrounding beam structures can be represented by 

different types of elastic foundation or coupling layer models [18]. Foundation models can be extended to 

account nonlinear effects using energy equivalent model and shearing layer properties [19, 20]. Such model 

was used by Eltaher et al. [21] in buckling, postbuckling and dynamic analysis of a beam resting on nonlinear 

elastic foundation. Emam et al. investigated postbuckling of multilayer imperfect nanobeam under a pre-

stress load [22]. Moreover, a novel numerical procedure was suggested by Mohamed et al. [23] to predict 

nonlinear free and steady state forced vibrations of curved beams surrounded by nonlinear elastic 

foundation with cubic nonlinearity and shearing layer. However, in most application examples linear 

elastic/viscoelastic foundation models can satisfy requirements for describing the effects of surrounding 

medium on observed structural element, which is the case observed in this study.  

Vibration damping can be observed in nanobeam models to account for the internal or external sources 

of dissipation [24]. Recently, nonlocal elastic and fractional viscoelastic models of nanobeams have been 

introduced [25, 26]. Later, Ansari et al. [27] utilized such a model to study the geometrically nonlinear 

vibration of fractional viscoelastic nanobeams by using numerical methods. In [28], this methodology was 

extended to study linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams 

considering surface energy effect. However, multiple scales (MS) perturbation method was employed by 

Eyebe et al. [29] to study the steady-state frequency response of a nonlinear nanobeam system resting on 

the fractional-order viscoelastic Winkler–Pasternak foundation. Farhatnia et al. [30] studied buckling of FG 

plate resting on Pasternak elastic layer using differential transform method. Jha and Dasgupta [31] used the 

approximate averaging method to found the analytical solution of the Duffing-type differential equation 

obtained for the nonlinear fractionally damped nanobeam structure. The authors adopted the Galerkin 

method to discretize the governing equation of the system. The overview of the papers using multiple time 

scales technique for finding the solution of nonlinear fractional-order differential equations can be found in 

[32].  

The main advantage of harmonic balance techniques is that they can be employed to find the periodic 

solutions of strongly nonlinear systems without introducing a small parameter like in perturbation 

techniques [33]. Shen et al. [34] investigated the Mathieu-Duffing oscillator by the incremental harmonic 

balance (IHB) method and determined the stability of the periodic solution using the Floquet theory. Later, 

this method was extended to study the fractional-order nonlinear Duffing [35] and forced Mathieu-Duffing 

type [36] of equations, where the incremental harmonic balance method and Galerkin procedure is used to 

transform the fractional nonlinear differential equation into an algebraic nonlinear system of equations. 

The results are verified with the averaging method.  Sourani et al. [37] studied the dynamic stability of the 



Euler–Bernoulli nanobeam under the time-dependent axial loading using the nonlocal strain gradient 

theory and taking into account surface stress effects and thermal gradient. The geometric nonlinearity is 

considered through the Von Kármán strain–displacement relation. The authors applied Bolotin and 

Incremental Harmonic Balance (IHB) methods to study the impact of different parameters on the dynamic 

stability. Moreover, in [38] the authors studied a nonlinear model of a nanobeam resting on the viscoelastic 

foundation and under the influence of axial dynamic load. In this paper, a multiple scales method was 

applied to obtain the nonlinear frequency equation and linear instability regions. Besides, the incremental 

harmonic balance method was employed to investigate nonlinear instability regions. 

Some authors studied the more complex nonlinear structural vibration problems with fractional-order 

rheological models. Lewandowski and Wielentejczyk [39, 40] studied the problem of nonlinear vibration of 

harmonically excited beams by using the fractional-order Zener type rheological models to describe the 

viscoelastic material behaviour of the beams. In these papers, the solution of the system of nonlinear 

differential equations is sought by the harmonic balance and continuation method. The stability of steady-

state solutions is verified by using the averaging method and Floquet theory as well.  

This study aims to employ the multiple time scales perturbation and incremental harmonic balance 

techniques to study the frequency response of a nanobeam system resting on the fractional visco-Pasternak 

type foundation. The single-mode Galerkin method is used to discretize the governing equation and obtain 

the nonlinear response for the fractional-order forced Mathieu-Duffing equation. The results are verified by 

the comparison of amplitude-frequency curves from the multiple scales and incremental harmonic balance 

methods obtained for the superharmonic resonance conditions of order two and three. The parametric 

study is performed for both, weak nonlinear forced oscillations using the perturbation method and strong 

nonlinear case by the IHB method. 

 

 

2. Preliminaries 

 

Constitutive equations of the nonlocal elasticity theory are based on the assumption that the stress at 

some point is a function of strains at all other points of the elastic body. This theory was initially introduced 

by Eringen [41], which in the last two decades shown to be very useful in describing the small-scale effects 

in nanostructures. Initially, Eringen [41] proposed the integral form of the constitutive equation to include 

the nonlocal effects into the model. However, this problem was simplified by deriving the differential form 

of the nonlocal constitutive equation, as given in [8, 42]. In this paper, we adopt the following form of 

nonlocal constitutive relation 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2
= 𝐸𝜀𝑥𝑥,                                                                                  (1) 

𝜏𝑥𝑧 − 𝜇
𝜕2𝜏𝑥𝑧

𝜕𝑥2
= 2𝐺𝜀𝑥𝑧,                                                                                  (2) 

with E and 𝐺 denoting the elastic and shear modulus, respectively, 𝜇 = (𝑒0𝑎)2 is the nonlocal parameter 

with 𝑎 denoting the internal characteristic length (lattice parameter, granular, etc.), 𝑒0 is the constant 



specific to each material and 𝜎𝑥𝑥  and 𝜏𝑥𝑧 are the nonlocal normal and shear stresses, respectively. In this 

study, we adopted the Euler-Bernoulli beam theory and therefore Eq. (2) is omitted in further analysis.  

 To represent the influence of the fractional visco-Pasternak foundation on the nanobeam, we will 

employ the phenomenological model of this foundation through the fractional-order relationship between 

restoring force and displacement of foundation acting on the nanobeam as one-dimensional structure. This 

relation is adopted from [44] and it takes the form 

𝜗(𝑥) = 𝛿̅𝐷𝑡
𝛼(𝑤) + �̅�𝑝𝐷𝑡

𝛼 (
𝜕2𝑤

𝜕𝑥2
),                                                                      (3) 

where 𝛿̅ and �̅�𝑝 are the coefficients of the fractional visco-Pasternak foundation and 𝐷𝑡
𝛼 = 𝑑𝛼/𝑑𝑡𝛼 is the 

operator of the fractional-order derivative [43]. Here, two well-known definitions of the fractional 

derivative will be employed [47]. The Riemann–Liouville definition of fractional-order derivative is used in 

Eq. (2) for the case when the multiple time scales method is applied. Next, instead of the previous one, the 

Caputo definition of fractional-order derivative is used to derive the relations for the incremental harmonic 

balance method. It should be noted that the model adopted here is similar to those presented in [29] but yet 

with the slightly different equation for the fractional visco-Pasternak foundation and numerical analysis for 

the strongly nonlinear case. 

 

3. Problem definition 

 

3. 1 Derivation of the governing equation 

 

        The governing equation for the forced vibration of a nanobeam resting on the fractional visco-Pasternak 

foundation can be derived based on the model presented in Fig. 1.  It should be noted that a nonlocal beam 

model could represent nanostructures such as carbon nanotube. Bearing in mind the perspective 

application of carbon nanotubes as actuators [52, 53], nonlinear analysis of such structures based on 

reliable models accounting size effects is important research subject. Besides, it is important to prescribe 

proper boundary conditions to analyse the free or forced vibration of a nanobeam structure based on the 

end conditions of a carbon nanotube depending on the number of fixed layers of atoms in the lattice (e.g. 

see [48]). If only one layer of atoms is fixed at both ends of carbon nanotube, we can use simply supported 

(S-S) boundary conditions in the mechanical model, and if several layers of atoms are fixed, we can use 

boundary conditions of clamped-clamped (C-C) nanobeam. Let us define the parameters of the presented 

model where 𝐿 is the length of the nanobeam, 𝜌 is the density, 𝐴 is the cross-sectional area of homogenous 

nanobeam. Parameters of the fractional visco-Pasternak foundation are given in Eq. (3).  

Based on the Euler-Bernoulli beam theory and von Kármán nonlinear deformation, we can write the 

strain displacement relation in the form 

𝜀𝑥𝑥 =
𝜕�̅�𝑥

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

=
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

,                                                       (4) 

where 𝑢 and 𝑤 are displacements in the axial and transverse directions of the nanobeam and 𝜀𝑥𝑥 is the 

deformation in the 𝑥 direction.  



 

Fig. 1 Illustration of a nanobeam on the fractional visco-Pasternak foundation 

 

Following the methodology from [46] and [38] we can write dynamic equilibrium equations of the element 

of the vibrating nanobeam as 

𝜕𝑉

𝜕𝑥
+ 𝑓(𝑥, 𝑡) − 𝜗(𝑥) +

𝜕

𝜕𝑥
(𝑆

𝜕𝑤

𝜕𝑥
) +

1

2
(

𝜕𝑤

𝜕𝑥
)

2

= 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
,                                     (5) 

𝜕𝑆

𝜕𝑥
= 𝜌𝐴

𝜕2𝑢

𝜕𝑡2
,                                                                                  (6) 

𝜕𝑀

𝜕𝑥
= 𝑉,                                                                                             (7) 

where 𝑉 = ∫ 𝜏𝑥𝑧𝑑𝐴
 

𝐴
 is the transverse force, 𝑆 = ∫ 𝜎𝑥𝑥𝑑𝐴

 

𝐴
 is the axial force,  𝑀 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴

 

𝐴
 are the bending 

moment and transverse excitation force given as 𝑓(𝑥, 𝑡) = �̅�2 cos Ω2𝑡.  

To derive the governing equation we need first to determine the axial force 𝑆.  By replacing Eq. (4) into 

the nonlocal constitutive equation (1) and taking into account equations for the axial and transverse forces 

we obtain the following equation for the nonlocal axial force  

𝑆 − 𝜇
𝜕2𝑆

𝜕𝑥2
= 𝐸𝐴 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

 ),                                                                 (8) 

and the nonlocal bending moment 

𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2
= −𝐸𝐼

𝜕2𝑤

𝜕𝑥2
.                                                                          (9) 

We further neglect the inertia term 𝜌𝐴
𝜕2𝑢

𝜕𝑡2  in (6) and the axial force becomes equal to the sum of forces 

acting in the axial direction and forces from the geometric nonlinearity, which yields 

𝜕  𝑢

𝜕𝑥  
=

𝑆

𝐸𝐴
−

1

2
(

𝜕𝑤

𝜕𝑥
)

2

.                                                                   (10) 

Integrating Eq. (10) along the length of the nanobeam and taking into account boundary conditions 𝑢(0, 𝑡) =

0 and 𝑢(𝐿, 𝑡) = ∆𝐿, where ∆𝐿 = 𝐹𝐿/𝐸𝐴 (e.g. see [46]), we obtain the equation for the axial force as   

𝑆 = 𝐹 +
𝐸𝐴

2𝐿
∫

1

2
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

.                                                                (11) 

Let us assume the axial dynamic force as  𝐹 = −(�̅�0 + �̅�1 cos Ω1𝑡), where �̅�0 is the amplitude of static load 

while �̅�1 is the amplitude of the dynamic force of the frequency Ω1. Finally, based on previous equations one 



can derive the nonlinear fractional-order partial differential equation of motion of the nanobeam resting on 

the fractional visco-Pasternak foundation as 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐷𝑡

𝛼𝑤 𝛿̅ + 𝐷𝑡
𝛼 (

𝜕2𝑤

𝜕𝑥2
) �̅�𝑝 + (�̅�0 + �̅�1 cos Ω1𝑡)

𝜕2𝑤

𝜕𝑥2
 

−
𝐸𝐴

2𝐿

𝜕2𝑤

𝜕𝑥2
∫

1

2
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

+ 𝐸𝐼
𝜕4𝑤

𝜕𝑥4
− 𝜇 [𝜌𝐴

𝜕4𝑤

𝜕𝑡2𝜕𝑥2
+ 𝐷𝑡

𝛼
𝜕2𝑤

𝜕𝑥2
𝛿̅ + 𝐷𝑡

𝛼 (
𝜕4𝑤

𝜕𝑥4
) �̅�𝑝 

+(�̅�0 + �̅�1 cos Ω1𝑡)
𝜕4𝑤

𝜕𝑥4
−

𝐸𝐴

2𝐿

𝜕4𝑤

𝜕𝑥4
∫

1

2
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

] = �̅�2 cos Ω2𝑡  .                       (12) 

In follow, we will observe only the dimensionless form of this equation given as 

𝜕2�̅�

𝜕𝜏2
+ 𝐷𝜏

𝛼�̅� 𝛿 + 𝐷𝜏
𝛼 (

𝜕2�̅�

𝜕�̅�2
) 𝐺𝑝 + (𝐹0 + 𝐹1 cos Ω̅1𝜏)

𝜕2�̅�

𝜕�̅�2
 

−𝑅
𝜕2�̅�

𝜕�̅�2
∫

1

2
(

𝜕�̅�

𝜕�̅�
)

2

𝑑�̅�
1

0

+
𝜕4�̅�

𝜕�̅�4
− 𝜂2 [

𝜕4�̅�

𝜕𝜏2𝜕�̅�2
+ 𝐷𝜏

𝛼
𝜕2�̅�

𝜕�̅�2
𝛿 + 𝐷𝜏

𝛼 (
𝜕4�̅�

𝜕�̅�4
) 𝐺𝑝  

+(𝐹0 + 𝐹1 cos Ω̅1𝜏)
𝜕4�̅�

𝜕�̅�4
−𝑅

𝜕4�̅�

𝜕�̅�4
∫

1

2
(

𝜕�̅�

𝜕�̅�
)

2

𝑑�̅�
1

0

] = 𝐹2 cos Ω̅2𝜏,                                (13) 

with dimensionless parameters  

�̅� =
𝑤

𝐿
, �̅� =

𝑥

𝐿
, 𝜂2 =

𝜇

𝐿
, 𝑐 = (

𝐸𝐼

𝐿4𝜌𝐴
)

1/2

, 𝜏 = 𝑡𝑐, 𝜏𝛼 = 𝑡𝛼𝑐𝛼 ,   𝛿 = 𝛿̅
𝐿4

𝐸𝐼
𝑐𝛼 ,  

  𝐺𝑝 = �̅�𝑝

𝐿2

𝐸𝐼
𝑐𝛼 , 𝑅 =

𝐿𝐴

2𝐼
, �̅�0 =

𝐹0𝐿2

𝐸𝐼
,   𝐹1 =

�̅�1𝐿2

𝐸𝐼
,   𝐹2 =

�̅�2𝐿3

𝐸𝐼
.                                 (14) 

 

3. 2 Problem solution 

 

In the general case, closed-form analytical solutions of nonlinear differential equations are difficult to 

find. Therefore, various numerical and approximate methods are used in the literature to find the solution 

to this problem. For the discretization of nonlinear partial differential equations, one may use whether Ritz 

[51] or the Galerkin method with linear mode shape functions as trial functions. Nayfeh et al. [45] have 

demonstrated that the single-mode Galerkin method yields satisfying results when the third-order 

nonlinear equation is considered but not for the equations with the second-order nonlinearity. Here, we use 

the single-mode Galerkin discretization since only the third-order nonlinear term is present in the nonlinear 

fractional-order differential equation. Accordingly, we assume the solution of Eq. (13) in the following form 

�̅�(�̅�, 𝜏) = 𝜙𝑛(�̅�)𝑞𝑛(𝜏),                                                                           (15)  

where 𝜙𝑛(�̅�) is the amplitude function, 𝑞𝑛(𝜏) is the time function and 𝑛 = 1, 2, … is the mode number. By 

replacing Eq. (15) into Eq. (13) we obtain the following nonlinear fractional-order differential equation  

�̈� + �̅�12𝐷𝜏
𝛼𝑞 + (𝜔𝑛

2 − �̅�3𝐹1 cos Ω̅1𝜏 )𝑞 + �̅�4𝑞3 = 𝑓 cos Ω̅2𝜏 ,                                  (16) 

where parameters are given as 

𝜔𝑛
 = [

𝑏3 − (𝑏2 − 𝜂2𝑏3)𝐹0

𝑏1 − 𝜂2𝑏2

]

1/2

,    �̅�12 = 𝛿 − 𝐺𝑝

𝑏2 − 𝜂2𝑏3

𝑏1 − 𝜂2𝑏2

,   �̅�3 =
−𝑏2 + 𝜂2𝑏3

𝑏1 − 𝜂2𝑏2

,  

�̅�4 = 𝑅𝑏4�̅�3,      𝑓 =
𝐹2𝑏0

𝑏1 − 𝜂2𝑏2

,                                                             (17) 

Coefficients 𝑏0 - 𝑏4 are calculated as 



{𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4} = ∫ {𝜙, 𝜙2, 𝜙′′𝜙, 𝜙𝐼𝑉𝜙, (𝜙′)2}𝑑�̅�
1

0

.                                     (18) 

For 𝜙𝑛(�̅�) we choose the linear mode shape functions corresponding to simply supported and clamped-

clamped boundary conditions. The linear mode shape functions are normalized to satisfy the following 

condition  

∫ 𝜙𝑛(�̅�) 𝜙𝑗(�̅�) 𝑑�̅�
1

0

= 𝛿𝑛𝑗,                                                           (19) 

where 𝛿𝑛𝑗 is the Kronecker delta for 𝑛, 𝑗 = 1, 2, … , ∞. Therefore, for the simply supported nanobeam, we 

use 

𝜙𝑛(�̅�) = 𝐶𝑛 sin 𝑘𝑛�̅� ,                                                              (20) 

while for the clamped-clamped nanobeam, we have 

𝜙𝑛(�̅�) = 𝐶𝑛 {cosh 𝑘𝑛�̅� − cos 𝑘𝑛�̅� −
cosh 𝑘𝑛�̅� − cos 𝑘𝑛�̅� 

sinh 𝑘𝑛�̅� − sin 𝑘𝑛�̅� 
 [sinh 𝑘𝑛�̅� − sin 𝑘𝑛�̅� ]} ,               (21) 

where 𝐶𝑛 are constants to be determined from the boundary conditions and 𝑘𝑛 are eigenvalues that are well 

known from the linear vibration analysis.  

 

 

 

3. 3 Multiple scales method 

 

Above Eq. (16) is known as the forced Mathieu–Duffing fractional-order differential equation, which we 

can express in terms of small parameter 𝜀 as 

�̈� + 𝜀𝛾12𝐷𝜏
𝛼𝑞 + (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos Ω̅1𝜏 )𝑞 + 𝜀𝛾4𝑞3 = 𝑓 cos Ω̅2𝜏,                                 (22) 

where we introduce new parameters as �̅�12 = 𝜀𝛾12, �̅�3 = 𝜀𝛾3 and �̅�4 = 𝜀𝛾4 with 𝜀 denoting the small time 

scale parameter and 𝐷 
𝛼 denoting, in this case, the operator of Riemann–Liouville fractional derivative (e.g. 

see [47]). The small parameter 𝜀 is introduced in front of the fractional and nonlinear terms to have weak 

damping and weak nonlinearity. It should be noted that forcing term in Eq. (22) is of order one (also known 

as hard forcing) which will help us to study secondary resonances in the system using the perturbation 

analysis of the first order. According to [49], forcing of order 𝜀 would indicate a primary resonance that is 

the same as in the Duffing equation.  

For the solution of Eq. (22) we will use the multiple scales method by assuming the solution in the following 

form 

𝑞(Τ0, Τ1, 𝜀 ) = 𝑞0(Τ0, Τ1 ) + 𝜀𝑞1(Τ0, Τ1) + ⋯,                                                 (23) 

where Τ0 = 𝜏 is fast and Τ1 = 𝜀𝜏 is a slow time scale. Here we will analyse the case of combined parametric 

and external resonance condition, where we adopt Ω̅1 = Ω̅2 = Ω̅. This will be later used to analyze the 

system for superharmonic resonance conditions.  

First, we will define the time derivatives as 

𝑑

𝑑𝜏
= 𝐷0 + 𝜀𝐷1 + О(𝜀2),                                                                          (24) 

𝑑2

𝑑𝜏2
= 𝐷0

2 + 2𝜀𝐷0𝐷1 + О(𝜀2),                                                                   (25) 



𝐷𝜏
𝛼 = 𝐷0+

𝛼 − 𝜀𝛼𝐷0+
𝛼−1𝐷1 + ⋯,                                                                   (26) 

where 𝐷𝑛 =
𝜕

∂Τ𝑛
 , (𝑛 = 0,1,2, … ) and 𝐷𝑛+

𝛼−𝑛 =
𝜕𝛼−𝑛

∂Τ𝑛+
𝛼−𝑛, (𝑛 = 0,1,2, … ) are classical and Riemann-Liouville's 

fractional derivative for new time scales, e.g. see [32].  

For the fractional derivative of the exponential function [32], we will adopt the following 

relationship that is restricted to the first and second-order approximations as 

𝐷0+
𝛼 𝑒𝑖𝜔𝜏 = (𝑖𝜔)𝛼𝑒𝑖𝜔𝜏 ,                                                                   (27) 

where 𝑖 is the imaginary unit. Replacing Eqs. (23)-(26) into Eq. (22) and then simplifying and extracting 

coefficients of 𝜀0 and 𝜀1 we get the following equations  

𝜀0:   𝐷0
2𝑞0 + 𝜔𝑛

2𝑞0 = 𝑓 cos Ω̅𝜏,                                                             (28) 

𝜀1:   𝐷0
2𝑞1 + 𝜔𝑛

2𝑞1 = −2𝐷0 𝐷1𝑞0 − 𝛾12𝐷0+
𝛼 𝑞0 − 𝛾4𝑞0

3 +
1

2
𝛾3�̅�1(𝑒𝑖Ω̅Τ0 + 𝑒−𝑖Ω̅Τ0)𝑞0.                 (29) 

The solution of Eq. (28) is sought in the form 

𝑞0 = А(Τ1)𝑒𝑖𝜔𝑛
 Τ0 + Λ𝑒𝑖Ω̅Τ0 + 𝑐. 𝑐. ,                                                         (30) 

where А is a complex function in terms of slow time scale, 𝑐. 𝑐. are complex conjugate terms and Λ is defined 

as  

Λ =
𝑓

2(𝜔𝑛
2 − Ω̅2)

.                                                                           (31) 

 

3.3.1 Superharmonic resonance 2�̅� ≈ 𝜔0𝑛
  

 

Let us now consider that 2Ω̅ = 𝜔𝑛
 + 𝜀𝜎, where 𝜎 is the detuning parameter. After replacing the 

solution for 𝑞0 Eq. (30) into Eq. (29) and equating the secular terms 𝑒𝑖𝜔𝑛
 Τ0  with zero, we obtain the 

solvability conditions for the superharmonic resonance as 

−2𝑖𝜔𝑛
 𝐴′ − 𝛾12𝐴(𝑖𝜔𝑛

 )𝛼 − 6𝛾4𝐴Λ2 − 3𝛾4𝐴2�̅� +
1

2
𝛾3Λ𝐹1𝑒𝑖𝜎Τ1 = 0,                             (32) 

where 𝐴′ = 𝐷1𝐴. If we take that А = 1 2⁄ 𝑎𝑒𝑖𝜑 , where 𝑎 and 𝜑 are the amplitude and phase of the nonlinear 

system, respectively and replace it in Eq. (32), separation of the real and the imaginary parts leads to  

𝜔𝑛
 𝜑′ − 3𝛾4Λ2𝑎 −

3

8
𝛾4𝑎3 −

1

2
𝛾12𝑎𝜔𝑛

𝛼 cos
𝛼𝜋

2
+

1

4
𝛾3Λ𝐹1 cos 𝜃 = 0,                             (33) 

−𝜔𝑛
 𝑎′ −

1

2
𝛾12𝑎𝜔𝑛

𝛼 sin
𝛼𝜋

2
+

1

2
𝛾3Λ𝐹1 sin 𝜃 = 0,                                                (34) 

with 𝜃 = 𝜎Τ1 − 𝜑 denoting the new phase angle. A relationship between the response amplitude and the 

detuning parameter can be obtained by using the following steady-state conditions 𝑎′ = 0, 𝜃′ = 0, 

wherefrom Eq. (33) and (34) we have 

1

2
𝛾3

Λ𝐹1

𝑎𝜔𝑛
 

cos 𝜃 = −𝜎 + 3𝛾4

Λ2

𝜔𝑛
 

+
3

8

𝛾4

𝜔𝑛
 

𝑎2 + 𝛾12𝜔𝑛
𝛼−1 cos

𝛼𝜋

2
,                                   (35) 

1

2
𝛾3

Λ𝐹1

𝑎𝜔𝑛
 

sin 𝜃 =
1

2
𝛾12𝜔𝑛

𝛼−1 sin
𝛼𝜋

2
.                                                           (36) 

After some algebra over Eqs. (35) and (36) one obtains the polynomial equation as 

𝜎2 − 2𝐾 𝜎 + 𝑀 = 0,                                                                  (37) 

where 𝐾 and 𝑀 are given as 



𝐾 = 3𝛾4

Λ2

𝜔𝑛
 

+
3

8

𝛾4

𝜔𝑛
 

𝑎2 +
1

2
𝛾12𝜔𝑛

𝛼−1 cos
𝛼𝜋

2
,                                                  (38) 

𝑀 = [3𝛾4

Λ2

𝜔𝑛
 

+
3

8

𝛾4

𝜔𝑛
 

𝑎2 +
1

2
𝛾12𝜔𝑛

𝛼−1 cos
𝛼𝜋

2
]

2

+ [
1

2
𝛾12𝜔𝑛

𝛼−1 sin
𝛼𝜋

2
 ]

2

− [
1

2
𝛾3

Λ𝐹1

𝑎𝜔𝑛
 
]

2

,        (39) 

wherefrom we can finally obtain the relationship for the amplitude-frequency curves as 

𝜎1/2 = 𝐾 ± √𝐾 
2 − 𝑀,                                                                   (40) 

One can notice that all the parameters contribute to the appearance of superharmonic resonance of order 

1/2 i.e. we have interaction of the nonlinear term, fractional-order term, parametric and external excitation 

terms.     

 

3.3.2 Superharmonic resonance 3�̅� ≈ 𝜔𝑛
  

 

Let us now consider the case when 3Ω̅ = 𝜔𝑛
 + 𝜀𝜎, where 𝜎 is again the detuning parameter. After 

replacing the solution for 𝑞0 Eq. (30) into Eq. (29) and equating the secular terms 𝑒𝑖𝜔𝑛
 Τ0 with zero, we 

obtain the solvability conditions as 

−2𝑖𝜔𝑛
 А′ − 𝛾12𝐴(𝑖𝜔𝑛

 )𝛼 − 6𝛾4𝐴Λ2 − 3𝛾4𝐴2�̅� − 𝛾4Λ3𝑒𝑖𝜎Τ1 = 0,                                  (41) 

Replacing again А = 1 2⁄ 𝑎𝑒𝑖𝜑  into Eq. (42) and separating real and imaginary parts yields 

𝜔𝑛
 𝑎𝜑′ −

1

2
𝛾12𝑎𝜔𝑛

𝛼 cos
𝛼𝜋

2
−

3

8
𝛾4𝑎3 − 3𝛾4Λ2𝑎 − 𝛾4Λ3 cos 𝜃 = 0,                                 (42) 

−𝜔𝑛
 𝑎′ −

1

2
𝛾12𝑎𝜔𝑛

𝛼 sin
𝛼𝜋

2
− 𝛾4Λ3 sin 𝜃 = 0,                                                  (43) 

with 𝜃 = 𝜎Τ1 − 𝜑 denoting the new phase angle. Using the same steady-state condition as in the previous 

case we obtain 

𝛾4Λ3

𝜔𝑛
 𝑎

cos 𝜃 = 𝜎 −
1

2
𝛾12𝜔0𝑛

𝛼−1 cos
𝛼𝜋

2
−

3

8

𝛾4

𝜔𝑛
 

𝑎2 − 3
𝛾4Λ2

𝜔𝑛
 

,                                 (44) 

𝛾4Λ3

𝜔𝑛
 𝑎

sin 𝜃 = −𝛾12𝜔𝑛
𝛼−1 sin

𝛼𝜋

2
.                                                               (45) 

After some algebra over Eqs. (44) and (45) one obtains the polynomial equation for the present 

superharmonic resonance case as 

𝜎2 − 2𝐾1𝜎 + 𝑀1 = 0,                                                                      (46) 

where 𝐾1 and 𝑀1 are given as 

𝐾1 = 3𝛾4

Λ2

𝜔𝑛
 

+
3

8

𝛾4

𝜔𝑛
 

𝑎2 +
1

2
𝛾12𝜔𝑛

𝛼−1 cos
𝛼𝜋

2
,                                                  (47) 

𝑀1 = [3𝛾4

Λ2

𝜔𝑛
 

+
3

8

𝛾4

𝜔𝑛
 

𝑎2 +
1

2
𝛾12𝜔𝑛

𝛼−1 cos
𝛼𝜋

2
]

2

+ [
1

2
𝛾12𝜔𝑛

𝛼−1 sin
𝛼𝜋

2
 ]

2

− [
𝛾4Λ3

𝑎𝜔𝑛
 

]

2

,                 (48) 

wherefrom we can finally obtain the relationship for the amplitude-frequency curves as 

𝜎1/2 = 𝐾1 ± √𝐾1
2 − 𝑀1,                                                                       (49) 

In this case, the parametric excitation term does not contribute to superharmonic resonance of order 1/3 

for the first-order perturbation analysis while we have interaction of the nonlinear and external forcing 

terms. In [49], the authors revealed the existence of superharmonic resonance in the higher-order 



perturbation analysis, even in the absence of nonlinearity. It is also concluded that the equivalent 

parametrically and the directly excited linear system can also exhibit superharmonic resonances. However, 

multiple scales analysis requires the introduction of the small parameter and therefore analysis is limited 

to weakly nonlinear and weakly damping cases. This problem can be overcome by the incremental harmonic 

balance method analysis that can be used easily to study periodic responses of strongly nonlinear systems 

without introducing the small parameter. 

 

3. 4 Incremental harmonic balance method 

 

Here, we suggest another semi-analytical approach based on the incremental harmonic balance method 

for finding the steady-state response of the system. First, one should introduce a new time scale 𝜏̅ = �̅�𝜏 into 

Eq. (22) to obtain the system of nonlinear ordinary differential equations in the following form 

�̅�2𝑞′′ + 𝜀𝛾12�̅�𝛼𝐷�̅�
𝛼𝑞 + (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos 𝜏̅)𝑞 + 𝜀𝛾4𝑞3 = 𝑓 cos 𝜏̅,                                    (50) 

Now, we assume that 𝐷 
𝛼  represents the operator of the Caputo fractional derivative (e.g. see [47]). Let us 

also assume that the neighboring state of the periodic solution can be expressed by adding the 

corresponding increments. For some initial guess 𝑞0 and �̅�0 of the steady-state modal amplitude, a 

neighbouring state of motion can be expressed in the following form 

𝑞 = 𝑞0 + ∆𝑞,      �̅� = �̅�0 + ∆�̅�.                                                                 (51) 

Substituting Eq. (51) into Eq. (50) and neglecting higher-order terms we obtain a linearized incremental 

relation given as  

�̅�0
2∆𝑞′′ + 𝜀𝛾12�̅�0

𝛼𝐷�̅�
𝛼∆𝑞 + (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos 𝜏̅)∆𝑞 + 3𝜀𝛾4𝑞0
2∆ 

= 𝑅 − {2�̅�0𝑞0
′′ + 𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼𝑞0}∆�̅�,                                                   (52) 

where 𝑅 is the residual term given as 

𝑅 = �̅�0
2𝑞0

′′ − 𝜀𝛾12�̅�0
𝛼𝐷�̅�

𝛼𝑞0 − (𝜔𝑛
2 − 𝜀𝛾3𝐹1 cos 𝜏̅)𝑞0 − 𝜀𝛾4𝑞0

3 + 𝑓 cos 𝜏̅,                         (53) 

which is equal to zero 𝑅 = 0 if 𝑞0 is the exact solution. Next, to obtain the periodic solutions of the forced 

Mathieu–Duffing fractional-order differential equation, 𝑞0, ∆𝑞, �̅�0  and ∆�̅� are expanded as a finite Fourier 

series of N terms as 

𝑞0 = 𝑎0 + ∑ [𝑎𝑛 cos(𝑛𝜏̅) + 𝑏𝑛 sin(𝑛𝜏̅)]
𝑁

𝑛=1
= 𝑪 ∙ 𝑨𝟎,                                  (54) 

∆𝑞 = ∆𝑎0 + ∑ [∆𝑎𝑛 cos(𝑛𝜏̅) + ∆𝑏𝑛 sin(𝑛𝜏̅)]
𝑁

𝑛=1
= 𝑪 ∙ ∆𝑨,                                 (55) 

where 

𝑪 = [ cos 𝜏̅  cos2𝜏̅   cos 3𝜏̅  …    cos 𝑁ℎ𝜏̅      sin 𝜏̅  sin2𝜏̅  sin 𝜏̅ …    sin 𝑁ℎ𝜏̅    ],              (56) 

𝑨𝟎 = [ 𝑎0   𝑎1    𝑎2 …    𝑎𝑁 
    𝑏1   𝑏2    𝑏3 …    𝑏𝑁 

]
𝑻

 ,                                 (57) 

Δ𝑨 = [ Δ𝑎0   Δ𝑎1    Δ𝑎2 …    Δ𝑎𝑁 
  Δ𝑏1  Δ𝑏2   Δ𝑏3 …    Δ𝑏𝑁 

]
𝑇

.                                (58) 

After considering Eqs. (54) - (58) into the Eq. (52), we apply the Galerkin procedure as presented in [35]. 

Considering the fact, that fractional-order derivative is an aperiodic function, in the integration procedure 

we select the time terminal 𝑇 = ∞ and average the integration results for the fractional derivative. Based 

on this procedure, for the periodic function, we select the time terminal as 𝑇 =  2𝜋 to obtain the following 

system of equations 



1

2𝜋
∫ (𝛿∆𝑞)[�̅�0

2∆𝑞′′ + (𝜔𝑛
2 − 𝜀𝛾3𝐹1 cos 𝜏̅)∆𝑞 + 3𝜀𝛾4𝑞0

2∆𝑞]𝑑𝜏̅
2𝜋

0

+
1

𝑇
∫ (𝛿∆𝑞)[𝜀𝛾12�̅�0

𝛼𝐷�̅�
𝛼(∆𝑞)]𝑑𝜏̅

𝑇

0

 

=
1

2𝜋
∫ (𝛿∆𝑞)[−�̅�0

2𝑞0
′′ − (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos 𝜏̅)𝑞0 −  𝜀𝛾4𝑞0
3 + 𝑓 cos 𝜏̅]𝑑𝜏̅

2𝜋

0

 

−
1

𝑇
∫ (𝛿∆𝑞)[𝜀𝛾12�̅�0

𝛼𝐷�̅�
𝛼(𝑞0)]𝑑𝜏̅

𝑇

0

−
1

2𝜋
∫ (𝛿∆𝑞)[2�̅�0

2𝑞0
′′]𝑑𝜏̅∆�̅�

2𝜋

0

 

−
1

𝑇
∫ (𝛿∆𝑞)[𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼(𝑞0)]𝑑𝜏̅

𝑇

0

                                                   (59) 

This yields a system of linearized algebraic equations in terms of Δ𝑨 as 

𝑴 Δ𝑨 + 𝑽∆Ω = 𝑹                                                                       (60) 

where elements of the Jacobi matrix 𝑴 = 𝑴1 + 𝑴2
𝛼, the corrective vector  𝑹 = 𝑹1 + 𝑹2

𝛼 and vector 𝑽 = 𝑽1 +

𝑽2
𝛼 are defined as 

𝑴1 =
1

2𝜋
∫ [�̅�0

2𝑪𝑻
𝑑2𝑪

𝑑𝜏̅2
+ (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos 𝜏̅)𝑪𝑻𝑪 +  3𝜀𝛾4𝑞0
2𝑪𝑻𝑪] 𝑑𝜏̅

2𝜋

0

                     (61) 

𝑴2
𝛼 = −

1

𝑇
∫ 𝑪𝑻[𝜀𝛾12�̅�0

𝛼𝐷�̅�
𝛼(𝑪)]𝑑𝜏̅

𝑇

0

                                                 (62) 

𝑹1 = −
1

2𝜋
∫ [�̅�0

2𝑪𝑻
𝑑2𝑪

𝑑𝜏̅2
+ (𝜔𝑛

2 − 𝜀𝛾3𝐹1 cos 𝜏̅)𝑪𝑻𝑪 + 𝜀𝛾4𝑞0
2𝑪𝑻𝑪]𝑨𝟎 − 𝑓 cos 𝜏̅  𝑪𝑻𝑑𝜏̅

2𝜋

0

     (63) 

𝑹2
𝛼 = −

1

𝑇
∫ 𝑪𝑻[𝜀𝛾12�̅�0

𝛼𝐷�̅�
𝛼(𝑪)]𝑑𝜏̅

𝑇

0

𝑨𝟎                                            (64) 

𝑽1 =
1

2𝜋
∫ [2�̅�0

2𝑪𝑻
𝑑2𝑪

𝑑𝜏̅2
] 𝑑𝜏̅

2𝜋

0

 𝑨𝟎                                                   (65) 

𝑽2
𝛼 =

1

𝑇
∫ 𝑪𝑻[𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼(𝑪)]𝑑𝜏̅

𝑇

0

 𝑨𝟎                                       (66) 

It should be noted that 𝑴2
𝛼 and 𝑹2

𝛼 are the Jacobi matrix and corrective vector terms corresponding to the 

fractional-order terms generated by the IHB method. Similar to [35], we can write 𝑴2
𝛼 , 𝑹2

𝛼  and 𝑽2
𝛼 as 

𝑴2
𝛼 = [

[𝑀11]𝛼 [𝑀12]𝛼

[𝑀21]𝛼 [𝑀22]𝛼] ,     𝑹2
𝛼 = [

𝑅10
𝛼

𝑅1𝑖
𝛼

𝑅2𝑖
𝛼

] , 𝑽2
𝛼 = [

𝑉10
𝛼

𝑉1𝑖
𝛼

𝑉2𝑖
𝛼

] , 𝑖 = 1,2, … 𝑁.                    (67) 

Derivation of the elements of the matrix 𝑴2
𝛼 , 𝑹2

𝛼 and 𝑽2
𝛼 are given in Appendix A, while more details on this 

procedure can be also seen in [36]. Finally, fractional-order part of the elements of Eq. (67) are expressed 

as  

[𝑀11]𝑖𝑗
𝛼 = 𝛿𝑖𝑗𝜀𝛾12�̅�𝛼

𝑖𝛼

2
cos (

𝛼𝜋

2
) , 𝑖 = 0,1,2, … 𝑁, 𝑗 = 0,1,2, … 𝑁, 

[𝑀12]𝑖𝑗
𝛼 = 𝛿𝑖𝑗𝜀𝛾12�̅�𝛼

𝑖𝛼

2
sin (

𝛼𝜋

2
) , 𝑖 = 0,1,2, … 𝑁, 𝑗 = 1,2, … 𝑁, 

[𝑀21]𝑖𝑗
𝛼 = −𝛿𝑖𝑗𝜀𝛾12�̅�𝛼

𝑖𝛼

2
sin (

𝛼𝜋

2
) , 𝑖 = 1,2, … 𝑁, 𝑗 = 0,1,2, … 𝑁, 

[𝑀22]𝑖𝑗
𝛼 = 𝛿𝑖𝑗𝜀𝛾12�̅�𝛼

𝑖𝛼

2
cos (

𝛼𝜋

2
) , 𝑖 = 1,2, … 𝑁, 𝑗 = 1,2, … 𝑁, 

𝑅10
𝛼 = 0, 

𝑅1𝑖
𝛼 = −𝜀𝛾12�̅�𝛼 [𝑎𝑖

𝑖𝛼

2
cos (

𝛼𝜋

2
) + 𝑏𝑖

𝑖𝛼

2
sin (

𝛼𝜋

2
) ] , 𝑖 = 1,2, … 𝑁, 



𝑅2𝑖
𝛼 = −𝜀𝛾12�̅�𝛼 [𝑎𝑖

𝑖𝛼

2
sin (

𝛼𝜋

2
) + 𝑏𝑖

𝑖𝛼

2
cos (

𝛼𝜋

2
) ] , 𝑖 = 1,2, … 𝑁,                                         

𝑉10
𝛼 = 0, 

𝑉1𝑖
𝛼 = 𝜀𝛾12𝛼�̅�0

𝛼−1 [𝑎𝑖

𝑖𝛼

2
cos (

𝛼𝜋

2
) + 𝑏𝑖

𝑖𝛼

2
sin (

𝛼𝜋

2
) ] , 𝑖 = 1,2, … 𝑁, 

𝑉2𝑖
𝛼 = 𝜀𝛾12𝛼�̅�0

𝛼−1 [𝑎𝑖

𝑖𝛼

2
sin (

𝛼𝜋

2
) + 𝑏𝑖

𝑖𝛼

2
cos (

𝛼𝜋

2
) ] , 𝑖 = 1,2, … 𝑁,                              (68) 

where 𝛿𝑖𝑗  is the Kronecker delta.  

It should be noted that for the single frequency solution we take that ∆Ω̅ = 0 in Eq. (64). To start the 

solution process via the Newton-Rapson technique one needs to assume the initial guess of the coefficients 

𝑨 to find the solution for Δ𝑨. This solution is then added to the current estimate of 𝑨 to obtain a new 

estimate. This procedure is repeated until the prescribed value of the norm of 𝑹 is satisfied (e.g. some small 

value of the order of 10−5). To obtain the frequency response of the system one should increment the value 

of frequency Ω̅, where the solution at the previous frequency is used as the initial guess to find the solution 

at the current frequency. For smaller increments of the frequency, one should expect faster convergence at 

a given frequency. 

 

4. Numerical study 

 

Here, we will give the numerical results obtained by the presented methodologies for finding the 

solution of the fractional-order forced Mathieu-Duffing equation. First, we will validate the results by 

comparing the steady-state frequency responses for the superharmonic resonance case 2Ω̅ ≈ 𝜔𝑛
  obtained 

by two different approaches, the multiple scales, and the incremental harmonic balance method, as given in 

Fig. 2 a). It should be noted that for the IHB method, 𝑁 = 8 terms in Fourier series are used for all numerical 

examples. The amplitudes for the IHB method corresponding to particular Fourier coefficients and 

harmonics are calculated as 𝐴𝑗 = √𝑎𝑗 + 𝑏𝑗 , 𝑗 = 1,2, … , 𝑁. For this purpose, we observed only the first 

vibration mode 𝑛 = 1 of the simply supported nanobeam and the following values of parameters for the 

simulations are adopted: 𝛼 = 0.5, 𝛿 = 0.7, 𝐺𝑝 = 0.02, , 𝐹0 = 10, 𝐹1 = 6, 𝐹2 = 10, �̃� = 1, and small time scale 

parameter 𝜀 = 0.1. For the IHB method, amplitude 𝐴2 corresponding to the second harmonic is plotted in 

Fig. 2 a).  against the amplitude from multiple scales method for different values of the nonlocal parameter 

and by using the Eq. (32) and formula 2Ω̅ = 𝜔𝑛
 + 𝜀𝜎.  A good agreement between the results from the MS 

and IHB method can be observed for both, upper and lower branches of the amplitude-frequency curves. 

One can notice a frequency shift in the superharmonic amplitude-frequency curves for an increase of 

nonlocal parameter i.e. the natural frequency, and consequently the superharmonic resonant frequency 

decreases for an increase of the nonlocal parameter as expected.   However, in the case without or for lower 

values of the nonlocal parameter, amplitudes from the multiple scales method are higher than those from 

the IHB method since they decrease for an increase of the nonlocal parameter. This difference could be 

attributed either to the low-order (first-order) approximation in the MS method or to the application of the 

IHB without the numerical continuation method, which is unable to calculate unstable branch periodic 

solutions and bifurcation points. 



Further, verification of the results from the semi-numerical IHB method is performed by comparing 

them against the results obtained by the numerical technique based on the Newmark method. Fig. 2 b) 

shows a single periodic solution for the nanobeam system which is compared against the solution obtained 

by the Grunvald-Letnikov approximation of fractional derivative and procedure based on the Newmark 

method from the paper by Evangelatos and Spanos [35].  The same values of parameters as in the previous 

figure are adopted for the simply supported nanobeam with excitation frequency Ω̅ = 1 and fractional 

parameter 𝛼 = 0.5. We can observe a good agreement between phase curves obtained by the IHB method 

and the Newmark method.  

 

Fig. 2 Verification of the results comparing the a) frequency response curves of the multiple scales and 

incremental harmonic balance methods (IHBM)  for  the resonance case  2Ω̅ ≈ 𝜔𝑛
  and b) a single periodic 

solution for Ω̅ = 1 and 𝛼 = 0.5 obtained by the IHBM and Newmark method adapted from [35]. 

   

4.1 A parametric study using the multiple scales method 

 

Here, the parametric study will be performed for the weakly nonlinear case using the multiple time 

scales method. The multiple scales analysis is performed for the same values of parameters as in the 

validation study, if not given differently in figures. Figs. 3 and 4 are showing the effect of the dimensionless 

nonlocal parameter, fractional-order derivative and damping parameter 𝛿 of visco-Pasternak foundation as 

well as the amplitude of external transverse excitation load on the amplitude-frequency curves. Both simply 

supported (S-S) and clamped-clamped (C-C) nanobeams are observed for the superharmonic resonance 

case 2Ω̅ ≈ 𝜔𝑛
 , based on Eq. (41). One can notice that an increase in the fractional-order and damping 

parameter 𝛿 of the visco-Pasternak foundation leads to a decrease in amplitudes since stronger damping in 

the system occurs since the order of derivative approaches the first-order derivative i.e. model with pure 

viscous behavior. Here, we can notice that for the weakly nonlinear case an increase of the nonlocal 

parameter 𝜂 decreases the amplitudes and slightly bends the amplitude curves to the right (nonlinear 

hardening effect). This decrease of amplitude due to an increase of the nonlocal parameter is attributed to 

the softening effect of the nonlocal parameter, which is also confirmed in the literature [29]. The frequency 

shift that is visible in the validation study cannot be seen here since the lover axis represents the detuning 

parameter in the vicinity of the resonant frequency and not the excitation frequency itself. For the excitation 



amplitude 𝐹2 we can notice a decrease in the amplitude-frequency curves for a decrease of the excitation 

amplitude. From the physical point of view, this means that the clamped nanobeam system is stiffer having 

a higher natural frequency and lower vibration amplitudes.  

A similar tendency can be observed for the amplitude-frequency curves in the case of superharmonic 

resonance case 3�̅� ≈ 𝜔𝑛
  in Figs. 5 and 6. The main difference is that amplitudes are generally lower than 

for the previous superharmonic case. It is a well-known fact that fractional-order derivative damping 

models exhibit a behaviour that is in between the pure elastic or viscous behaviour depending on the order 

of derivative. An increase in the fractional-order and damping parameter of the visco-Pasternak foundation 

leads to a decrease in amplitudes due to the stronger effect of the damping term in the equation. The 

opposite case occurs for an increase in the amplitude of the excitation load where the amplitude-frequency 

curves are increasing. The effect of the nonlocal parameter shows similar behavior as for the previous 

resonant case. 

 

Fig. 3 The frequency response of the S-S nanobeam system for 2Ω̅ ≈ 𝜔𝑛
 . 

 



 

Fig. 4 Frequency response of the C-C nanobeam system for 2Ω̅ ≈ 𝜔𝑛
 . 

 

 

 

 

Fig. 5 Frequency response of the S-S nanobeam system for 3Ω̅ ≈ 𝜔𝑛
 . 



 

Fig. 6 Frequency response of the C-C nanobeam system for 3Ω̅ ≈ 𝜔𝑛
 . 

4.2 A parametric study using the incremental harmonic method 

 

As already mentioned, the main reason for including the IHB method when solving the nonlinear 

differential equation lies in the possibility to study strongly nonlinear oscillations of the system. Here, in 

Figs. 7 and 8 simulations are performed for the same values of parameters as in the validation study, where 

the steady-state periodic solutions in the vicinity of the resonance states are again calculated for the weakly 

nonlinear case 𝜀 = 0.1.  



 

Fig. 7 Time history (left) and phase plane (right) of S-S nanobeam system for the superharmonic 

resonance 2Ω̅ ≈ 𝜔𝑛
 . 

        

Fig. 8 Time history (left) and phase plane (right) of S-S nanobeam system for the superharmonic 

resonance 3Ω̅ ≈ 𝜔𝑛
 . 

 



Figs. 7 and 8 show periodic solutions for the simply supported nanobeam and the superharmonic 

resonance cases 2Ω̅ ≈ 𝜔𝑛
  and 3Ω̅ ≈ 𝜔𝑛

 , respectively. In the time history and phase plane, one can notice 

transformation from regular periodic orbits to the superharmonic one, i.e. one can notice that the system 

occurs superharmonic resonance, superposition of the first and second harmonic, resulting in the periodic 

response curves with single loops in the phase plane. Similarly, in Fig. 8 one can observe superposition with 

the third harmonic which results in two loops in the phase plane curve.  This means that in both 

superharmonic resonance cases the components of the second i.e. third harmonic occupy a dominant 

position in the amplitudes. 

In the following figures, we study the strongly nonlinear case ε=1 by using the incremental 

harmonic balance method, where we omitted the analysis for the clamped boundary conditions since only 

reduced amplitudes are obtained without significant qualitative changes. Figs. 9 and 10 show the amplitude-

frequency curves of the simply supported nanobeam for changes of the fractional and damping parameters 

of the visco-Pasternak foundation, nonlocal parameter, and amplitude of external excitation. Since the 

strongly nonlinear case is observed, amplitudes are larger than those for the weakly nonlinear case obtained 

by the multiple scales analysis. The effect of the fractional-order damping on amplitudes shows a similar 

tendency as for the weakly nonlinear case. However, bearing in mind that the assumption of weak damping 

no longer holds for this case, since there is no influence of the small parameter 𝜀, the effect od fractional 

damping is stronger. This leads to a significant decrease in amplitudes due to an increase of an order of 

fractional derivative 𝛼 or damping parameter 𝛿. However, an increase of the amplitude of external 

excitation load results in increased amplitudes in the frequency response diagrams. For the nonlocal 

parameter, we can notice a difference in the behavior for the strongly nonlinear case compared to the 

weakly nonlinear case analysed via multiple scales method as discussed earlier. For both superharmonic 

cases, one can observe a significant shift of frequency curves to the left for an increase of the nonlocal 

parameter. From the literature, it is well known that the introduction of the nonlocal parameter decreases 

the natural frequency of the system and, therefore, it causes shifting of the superharmonic resonance curves 

in the amplitude-frequency diagram. Analysis of strongly nonlinear systems via the IHB method can lead to 

different results and conclusions and possibly provide a more reliable analysis of nanostructures based on 

nonlocal models. However, further investigation of this problem is necessary. 



 

Fig. 9 Amplitude-frequency response of S-S nanobeam for a strongly nonlinear case and the 

superharmonic resonance 2Ω̅ ≈ 𝜔𝑛
 . 

 

Fig. 10 Amplitude-frequency response of S-S nanobeam for a strongly nonlinear case and the 

superharmonic resonance 3Ω̅ ≈ 𝜔𝑛
 . 



5. Conclusion 

 

In this communication, we analysed the nonlinear vibration of a nanobeam resting on the fractional 

visco-Pasternak foundation using the nonlocal elasticity theory and fractional-order rheological models. 

The governing equation is discretized by using the Galerkin approximation and corresponding nonlinear 

fractional-order forced Mathieu-Duffing equation is obtained. The solution is sought for the steady-state 

superharmonic resonance conditions using the multiple time scales analysis for the weakly nonlinear case 

and incremental harmonic balance method for the strongly nonlinear case. The main contributions and 

conclusions are: 

• One-mode Galerkin approximation shown to be effective in discretization of the governing 

equation for nonlinear nanobeam resting on fractional visco-Pasternak foundation. 

• The validation study confirmed the accuracy of the incremental harmonic balance method in 

obtaining the results for the fractional order nonlinear differential equations.  

• The advantage of the incremental harmonic balance method in analysing both weak and 

strongly nonlinear cases was demonstrated through several numerical examples. However, 

the obtained amplitude-frequency curves, especially for unstable periodic solutions, have 

shown deficiency of this method when used without numerical continuation method. 

• Parametric study revealed a significant influence of the nonlocal parameter and parameters 

of the fractional visco-Pasternak foundation on amplitude-frequency response of the system 

for superharmonic resonance conditions.   

This study can be useful for future investigation of the nonlinear behaviour of more complex nanostructure 

based system with fractional damping by using the combination of the incremental harmonic balance and 

numerical continuation methods. 

 

Acknowledgments This work was supported by the Serbian Ministry of Education, Science and 

Technological Development through Mathematical Institute of the Serbian Academy of Sciences and Arts. 

D.K. was funded by the Marie Skłodowska-Curie Actions - European Commission fellowship (grant number 

799201- METACTIVE). 

This paper is a contribution in honour of the 75th birthday and 52 years of scientific work of Professor 

Katica (Stevanović) Hedrih. 

 

References 

[1]  Gudmundson P. On the accuracy of the harmonic balance method concerning vibrations of beams with 

nonlinear supports. Ingenieur-Archiv. 1989; 59(5):333-44. 

[2] Sze KY, Chen SA, Huang JL. The incremental harmonic balance method for nonlinear vibration of axially 

moving beams. Journal of sound and vibration. 2005;281(3-5): 611-26. 

[3] Yang XD, Tang YQ, Chen LQ, Lim CW. Dynamic stability of axially accelerating Timoshenko beam: 

Averaging method. European Journal of Mechanics-A/Solids. 2010; 29(1):81-90. 



[4] Rossikhin YA, Shitikova MV. Free damped nonlinear vibrations of a viscoelastic plate under two-to-one 

internal resonance. In Materials science forum 2003 (Vol. 440, pp. 29-36). Trans Tech Publications Ltd. 

[5] Bucher C, Pirrotta A. Dynamic Finite Element analysis of fractionally damped structural systems in the 

time domain. Acta Mechanica. 2015; 226(12):3977-90. 

[6] Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R. Properties of carbon nanotube–

polymer composites aligned in a magnetic field. Carbon. 2007; 45(10):2037-46. 

[7]  Arani AG, Dashti P, Amir S, Yousefi M. Nonlinear vibration of coupled nano-and microstructures 

conveying fluid based on Timoshenko beam model under two-dimensional magnetic field. Acta 

Mechanica. 2015; 226(8):2729-60. 

[8] Pavlović IR, Pavlović R, Janevski G, Despenić N, Pajković V. Dynamic behaviour of two elastically 

connected nanobeams under a white noise process. Facta Universitatis, Series: Mechanical 

Engineering. 2020. 

[9]   Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E., & Meletis, E. I. (2012). Static analysis of nanobeams 

including surface effects by nonlocal finite element. Journal of Mechanical Science and Technology, 

26(11), 3555-3563. 

[10] Eltaher, M. A., Mahmoud, F. F., Assie, A. E., & Meletis, E. I. (2013). Coupling effects of nonlocal and surface 

energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 224, 760-774. 

[11] Eltaher, M. A., Khater, M. E., & Emam, S. A. (2016). A review on nonlocal elastic models for bending, 

buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 

40(5-6), 4109-4128. 

[12] Eltaher, M. A., Hamed, M. A., Sadoun, A. M., & Mansour, A. (2014). Mechanical analysis of higher order 

gradient nanobeams. Applied Mathematics and Computation, 229, 260-272. 

[13] Agwa, M. A., & Eltaher, M. A. (2016). Vibration of a carbyne nanomechanical mass sensor with surface 

effect. Applied Physics A, 122(4), 335. 

[14] Eltaher, M. A., Abdraboh, A. M., & Almitani, K. H. (2018). Resonance frequencies of size dependent 

perforated nonlocal nanobeam. Microsystem Technologies, 24(9), 3925-3937. 

[15] Eltaher, M. A., Omar, F. A., Abdalla, W. S., & Gad, E. H. (2019). Bending and vibrational behaviors of 

piezoelectric nonlocal nanobeam including surface elasticity. Waves in Random and Complex Media, 

29(2), 264-280. 

[16] Sedighi, H. M., & Malikan, M. (2020). Stress-driven nonlocal elasticity for nonlinear vibration 

characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment. 

Physica Scripta, 95(5), 055218. 

[17] Sedighi, H. M., Malikan, M., Valipour, A., & Żur, K. K. (2020). Nonlocal vibration of carbon/boron-nitride 

nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method. 

Journal of Computational Design and Engineering. 

[18] Hamed, M. A., Mohamed, S. A., & Eltaher, M. A. (2020). Buckling analysis of sandwich beam rested on 

elastic foundation and subjected to varying axial in-plane loads. Steel and Composite Structures, 34(1), 

75-89. 



[19] Mohamed, N., Eltaher, M. A., Mohamed, S. A., & Seddek, L. F. (2019). Energy equivalent model in analysis 

of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation. Structural 

Engineering and Mechanics, 70(6), 737-750. 

 

[20] Mohamed, N., Mohamed, S. A., & Eltaher, M. A. (2020). Buckling and post-buckling behaviors of higher 

order carbon nanotubes using energy-equivalent model. Engineering with Computers, 1-14. 

[21] Eltaher, M. A., Mohamed, N., Mohamed, S. A., & Seddek, L. F. (2019). Periodic and nonperiodic modes of 

postbuckling and nonlinear vibration of beams attached to nonlinear foundations. Applied 

Mathematical Modelling, 75, 414-445. 

[22] Emam, S. A., Eltaher, M. A., Khater, M. E., & Abdalla, W. S. (2018). Postbuckling and free vibration of 

multilayer imperfect nanobeams under a pre-stress load. Applied Sciences, 8(11), 2238. 

[23] Mohamed, N., Eltaher, M. A., Mohamed, S. A., & Seddek, L. F. (2018). Numerical analysis of nonlinear 

free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. 

International Journal of Non-Linear Mechanics, 101, 157-173. 

[24] Cajić M, Lazarević M, Karličić D, Sun H, Liu X. Fractional-order model for the vibration of a nanobeam 

influenced by an axial magnetic field and attached nanoparticles. Acta Mechanica. 2018; 229(12):4791-

815. 

[25] Ansari R, Oskouie MF, Sadeghi F, Bazdid-Vahdati M. Free vibration of fractional viscoelastic 

Timoshenko nanobeams using the nonlocal elasticity theory. Physica E: Low-Dimensional Systems and 

Nanostructures. 2015; 74:318-27. 

[26] Cajić M, Karličić D, Lazarević M. Nonlocal vibration of a fractional order viscoelastic nanobeam with 

attached nanoparticle. Theoretical and Applied Mechanics. 2015; 42(3):167-90. 

[27] Ansari R, Oskouie MF, Gholami R. Size-dependent geometrically nonlinear free vibration analysis of 

fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Physica E: Low-Dimensional 

Systems and Nanostructures. 2016; 75:266-71. 

[28] Oskouie MF, Ansari R. Linear and nonlinear vibrations of fractional viscoelastic Timoshenko 

nanobeams considering surface energy effects. Applied Mathematical Modelling. 2017; 43:337-50. 

[29] Eyebe GJ, Betchewe G, Mohamadou A, Kofane TC. Nonlinear vibration of a nonlocal nanobeam resting 

on fractional-order viscoelastic Pasternak foundations. Fractal and Fractional. 2018; 2(3):21. 

[30] Farhatnia F, Ghanbari-Mobarakeh M, Rasouli-Jazi S, Oveissi S. Thermal buckling analysis of functionally 

graded circular plate resting on the pasternak elastic foundation via the differential transform method. 

Facta Universitatis, Series: Mechanical Engineering. 2017; 15(3):545-63. 

[31] Jha AK, Dasgupta SS. Mathematical modeling of a fractionally damped nonlinear nanobeam via nonlocal 

continuum approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science. 2019; 233(19-20):7101-15. 

[32] Shitikova MV. The fractional derivative expansion method in nonlinear dynamic analysis of structures. 

Nonlinear Dynamics. 2020; 99(1):109-22. 

[33] Niu J, Shen Y, Yang S, Li S. Higher-order approximate steady-state solutions for strongly nonlinear 

systems by the improved incremental harmonic balance method. Journal of Vibration and Control. 

2018; 24(16):3744-57. 



[34] Shen JH, Lin KC, Chen SH, Sze KY. Bifurcation and route-to-chaos analyses for Mathieu–Duffing 

oscillator by the incremental harmonic balance method. Nonlinear Dynamics. 2008; 52(4):403-14. 

[35] Shen YJ, Wen SF, Li XH, Yang SP, Xing HJ. Dynamical analysis of fractional-order nonlinear oscillator by 

incremental harmonic balance method. Nonlinear Dynamics. 2016; 85(3):1457-67. 

[36] Wen SF, Shen YJ, Wang XN, Yang SP, Xing HJ. Dynamical analysis of strongly nonlinear fractional-order 

Mathieu-Duffing equation. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2016; 

26(8):084309. 

[37]  Sourani P, Hashemian M, Pirmoradian M, Toghraie D. A Comparison of the Bolotin and Incremental 

Harmonic Balance Methods in the Dynamic Stability Analysis of an Euler–Bernoulli Nanobeam Based 

on the Nonlocal Strain Gradient Theory and Surface Effects. Mechanics of Materials. 2020: 103403. 

[38] Karličić D, Kozić P, Pavlović R, Nešić N. Dynamic stability of single-walled carbon nanotube embedded 

in a viscoelastic medium under the influence of the axially harmonic load. Composite Structures. 2017; 

162:227-43. 

[39] Lewandowski R, Wielentejczyk P. Nonlinear vibration of viscoelastic beams described using fractional 

order derivatives. Journal of Sound and Vibration. 2017; 399:228-43. 

[40] Wielentejczyk P, Lewandowski R. Geometrically nonlinear, steady state vibration of viscoelastic 

beams. International Journal of Non-Linear Mechanics. 2017; 89:177-86. 

[41] Eringen AC, Edelen DG. On nonlocal elasticity. International Journal of Engineering Science. 197; 

10(3):233-48. 

[42] Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and 

surface waves. Journal of applied physics. 1983; 54(9):4703-10. 

[43] Atanacković TM, Pilipović S, Stanković B, Zorica D. Fractional calculus with applications in mechanics. 

Wiley-ISTE; 2014. 

[44] Cai W, Chen W, Xu W. Fractional modeling of Pasternak-type viscoelastic foundation. Mechanics of 

Time-Dependent Materials. 2017 Feb 1;21(1):119-31. 

[45] Nayfeh AH. On the Discretization of Spatially Continuous Systems with Quadratic and Cubic 

Nonlinearities. JSME International Journal, Series C. 2002; 45(1):79-86. 

[46] Kovacic I, Brennan MJ. The Duffing equation: nonlinear oscillators and their behaviour. John Wiley & 

Sons; 2011. 

[47] Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional 

differential equations, to methods of their solution and some of their applications. Elsevier; 1998. 

[48] Ansari R, Sahmani S. Small scale effect on vibrational response of single-walled carbon nanotubes with 

different boundary conditions based on nonlocal beam models. Communications in Nonlinear Science 

and Numerical Simulation. 2012; 17(4):1965-79. 

[49] Ramakrishnan V, Feeny BF. Resonances of a forced Mathieu equation with reference to wind turbine 

blades. Journal of vibration and acoustics. 2012; 134(6). 

[50] Evangelatos GI, Spanos PD. An accelerated newmark scheme for integrating the equation of motion of 

nonlinear systems comprising restoring elements governed by fractional derivatives. In Recent 

advances in mechanics 2011 (pp. 159-177). Springer, Dordrecht. 



[51] Noll MU, Lentz L, Wagner UV. On the discretization of a bistable cantilever beam with application to 

energy harvesting. Facta Universitatis, Series: Mechanical Engineering. 2019; 17(2):125–139. 

[52] Yang, W. D., & Wang, X. (2016). Nonlinear pull-in instability of carbon nanotubes reinforced nano-

actuator with thermally corrected Casimir force and surface effect. International Journal of Mechanical 

Sciences, 107, 34-42. 

[53] Sedighi, H. M., & Farjam, N. (2017). A modified model for dynamic instability of CNT based actuators by 

considering rippling deformation, tip-charge concentration and Casimir attraction. Microsystem 

technologies, 23(6), 2175-2191. 

 

Appendix A 

 

Here, due to simplicity, we will present the procedure of integrating the fractional-order term in Jacobi 

matrix and corrective vector that is described in detail in the paper by Shen [19] The elements of the matrix 

𝑴2
𝛼 and vector 𝑹2

𝛼 from Eq. (71) based on Eqs. (68) and (70) and elements of the matrix 𝑽2
𝛼 Eq. (85) based 

on Eq. (84) are given as 

[𝑀11]𝑖𝑗
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 cos(𝑖𝜏̅) 𝐷�̅�

𝛼[cos(𝑗𝜏̅)]𝑑𝜏̅,    
𝑇

0

𝑖 = 0,1,2, … 𝑁, 𝑗 = 0,1,2, … 𝑁,              (A1) 

[𝑀12]𝑖𝑗
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 cos(𝑖𝜏̅) 𝐷�̅�

𝛼[sin(𝑗𝜏̅)]𝑑𝜏̅,   
𝑇

0

𝑖 = 0,1,2, … 𝑁, 𝑗 = 1,2, … 𝑁,             (A2) 

[𝑀21]𝑖𝑗
𝛼 lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 sin(𝑖𝜏̅) 𝐷�̅�

𝛼[cos(𝑗𝜏̅)]𝑑𝜏̅,    
𝑇

0

𝑖 = 1,2, … 𝑁, 𝑗 = 0,1,2, … 𝑁,            (A3) 

[𝑀22]𝑖𝑗
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 sin(𝑖𝜏̅) 𝐷�̅�

𝛼[sin(𝑗𝜏̅)]𝑑𝜏̅,    
𝑇

0

𝑖 = 1,2, … 𝑁, 𝑗 = 1,2, … 𝑁.                  (A4) 

𝑅10
𝛼 = lim

𝑇→∞
−

1

𝑇
∫ 𝜀𝛾12�̅�𝛼𝐷�̅�

𝛼[𝑞0
 ]𝑑𝜏̅,     

𝑇

0

                                                              (A5) 

𝑅1𝑖
𝛼 = lim

𝑇→∞
−

1

𝑇
∫ 𝜀𝛾12�̅�𝛼𝐷�̅�

𝛼[𝑞0
 ] cos(𝑖𝜏̅) 𝑑𝜏̅,    

𝑇

0

  𝑖 = 1,2, … 𝑁,                       (A6) 

𝑅2𝑖
𝛼 = lim

𝑇→∞
−

1

𝑇
∫ 𝜀𝛾12�̅�𝛼𝐷�̅�

𝛼[𝑞0
 ] sin(𝑖𝜏̅) 𝑑𝜏̅,    

𝑇

0

  𝑖 = 1,2, … 𝑁,                        (A7) 

𝑉10
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼[𝑞0

 ]𝑑𝜏̅,     
𝑇

0

                                                             (A8) 

𝑉1𝑖
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼[𝑞0

 ] cos(𝑖𝜏̅) 𝑑𝜏̅,    
𝑇

0

  𝑖 = 1,2, … 𝑁,                       (A9) 

𝑉2𝑖
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12𝛼�̅�0

𝛼−1𝐷�̅�
𝛼[𝑞0

 ] sin(𝑖𝜏̅) 𝑑𝜏̅,    
𝑇

0

  𝑖 = 1,2, … 𝑁,                       (A10) 

Based on Caputo's definition of fractional derivative we can rewrite Eq. (A1) as 

[𝑀11]𝑖𝑗
𝛼 = lim

𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 cos(𝑖𝜏̅) 𝐷�̅�

𝛼[cos(𝑗𝜏̅)]𝑑𝜏̅ 
𝑇

0

 

= lim
𝑇→∞

1

𝑇
∫ 𝜀𝛾12�̅�𝛼 cos(𝑖𝜏̅) [

1

Γ(1 − 𝛼)
∫

−𝑗 sin(𝑗𝑟)

(𝜏̅ − 𝑟)𝛼

�̅�

0

𝑑𝑟] 𝑑𝜏̅.
𝑇

0

             (A11) 

If we take that 𝑠 = 𝜏̅ − 𝑟 and 𝑑𝑟 = −𝑑𝑠, then Eq. (A11) is given as 



[𝑀11]𝑖𝑗
𝛼 = −

𝑗𝜀𝛾12�̅�𝛼

Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ cos(𝑖𝜏̅) [∫

sin(𝑗𝜏̅ − 𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠] 𝑑𝜏̅.
𝑇

0

 

                    =
−𝑗𝜀𝛾12�̅�𝛼

Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [cos(𝑖𝜏̅) sin(𝑗𝜏̅) ∫

cos(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠] 𝑑𝜏̅
𝑇

0

 

−
−𝑗𝜀𝛾12�̅�𝛼

Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [cos(𝑖𝜏̅) cos(𝑗𝜏̅) ∫

sin(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠] 𝑑𝜏̅.
𝑇

0

                            (A12) 

By defining the first part of Eq. (A11) as 𝑈1 and the second part as 𝑈2 and integrating them by parts one 

obtains 

𝑈1 =
−𝑗𝜀𝛾12�̅�𝛼

Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ {

1

2
[sin(𝑖 + 𝑗)𝜏̅ − sin(𝑖 − 𝑗)𝜏̅] ∫

cos(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠} 𝑑𝜏̅
𝑇

0

 

=
−𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
[
cos(𝑖 + 𝑗)𝜏̅

𝑖 + 𝑗
−

cos(𝑖 − 𝑗)𝜏̅

𝑖 − 𝑗
] ∫

cos(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠|
0

𝑇

 

−
𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [

cos(𝑖 + 𝑗)𝜏̅

𝑖 + 𝑗
−

cos(𝑖 − 𝑗)𝜏̅

𝑖 − 𝑗
]

cos(𝑗𝜏̅)

𝜏̅𝛼
𝑑𝜏̅

𝑇

0

                                   (A13) 

𝑈2 =
−𝑗𝜀𝛾12�̅�𝛼

Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ {

1

2
[cos(𝑖 + 𝑗)𝜏̅ − cos(𝑖 − 𝑗)𝜏̅] ∫

sin(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠} 𝑑𝜏̅
𝑇

0

 

=
𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
[
sin(𝑖 + 𝑗)𝜏̅

𝑖 + 𝑗
+

sin(𝑖 − 𝑗)𝜏̅

𝑖 − 𝑗
] ∫

sin(𝑗𝑠)

𝑠𝛼

�̅�

0

𝑑𝑠|
0

𝑇

 

−
𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [

sin(𝑖 + 𝑗)𝜏̅

𝑖 + 𝑗
+

sin(𝑖 − 𝑗)𝜏̅

𝑖 − 𝑗
]

sin(𝑗𝜏̅)

𝜏̅𝛼
𝑑𝜏̅

𝑇

0

                                  (A14) 

For the calculation procedure with the above equations, it should be noted that we adopted that  
sin(0�̅�)

0
= 1 

and 
cos(0�̅�)

0
= 0. Further, we will introduce two important formulas that can be obtained from the residue 

theory, which are given as 

lim
𝑇→∞

∫
sin(𝑗𝑝)

𝑝𝛼

𝑇

0

𝑑𝑝 = 𝑗𝛼−1Γ(1 − 𝛼) cos (
𝛼𝜋

2
)                                   (A15) 

lim
𝑇→∞

∫
cos(𝑗𝑝)

𝑝𝛼

𝑇

0

𝑑𝑝 = 𝑗𝛼−1Γ(1 − 𝛼) sin (
𝛼𝜋

2
)                                   (A16) 

If we consider the above formula Eq. (A16) into the first part of Eq. (A13) denoted as 𝐴𝑈11 and integrate the 

second part denoted as 𝐴𝑈12, we obtain these terms in the following forms 

𝐴𝑈11 =
𝜀𝛾12𝑗𝛼�̅�𝛼 sin (

𝛼𝜋
2

)

2
lim
𝑇→∞

1

𝑇
[
cos(𝑖 + 𝑗)𝑇

𝑖 + 𝑗
−

cos(𝑖 − 𝑗)𝑇

𝑖 − 𝑗
] = 0,                                (A17) 

𝐴𝑈12 = −
𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [

cos(𝑖 + 𝑗)𝜏̅ cos(𝑗𝜏̅)

(𝑖 + 𝑗)𝜏̅𝛼
−

cos(𝑖 − 𝑗)𝜏̅ cos(𝑗𝜏̅)

(𝑖 − 𝑗)𝜏̅𝛼
] 𝑑𝜏̅  

𝑇

0

= 0,            (A18) 

Similarly, substituting Eq. (A15) into the first part of Eq. (A14) denoted as 𝐴𝑈21 and integrating the second 

part denoted as 𝐴𝑈22, we obtain these terms in the following forms 

𝐴𝑈21 =
𝜀𝛾12𝑗𝛼�̅�𝛼 cos (

𝛼𝜋
2

)

2
lim
𝑇→∞

1

𝑇
[
sin(𝑖 + 𝑗)𝑇

𝑖 + 𝑗
+

sin(𝑖 − 𝑗)𝑇

𝑖 − 𝑗
] 

= {

0,                                      𝑖 ≠ 𝑗

𝜀𝛾12𝑗𝛼�̅�𝛼 cos (
𝛼𝜋
2

)

2
,    𝑖 = 𝑗

                                   (A19) 



𝐴𝑈22 = −
𝑗𝜀𝛾12�̅�𝛼

2Γ(1 − 𝛼)
lim
𝑇→∞

1

𝑇
∫ [

sin(𝑖 + 𝑗)𝜏̅ sin(𝑗𝜏̅)

(𝑖 + 𝑗)𝜏̅𝛼
+

sin(𝑖 − 𝑗)𝜏̅ sin(𝑗𝜏̅)

(𝑖 − 𝑗)𝜏̅𝛼
] 𝑑𝜏̅  

𝑇

0

= 0,                (A20) 

By combining Eqs. (A12)-(A14) and Eqs. (A17)-(A20) one obtains 

[𝑀11]𝑖𝑗
𝛼 = {

0,                                     𝑖 ≠ 𝑗

𝜀𝛾12𝑗𝛼�̅�𝛼 cos (
𝛼𝜋
2

)

2
,     𝑖 = 𝑗

                                                 (A21) 

Other elements of the matrix 𝑴2
𝛼 and vectors 𝑹2

𝛼 and 𝑽2
𝛼 can be obtained using a similar procedure as given 

in Eqs. (A11)-(A20). The final values of these elements are given in Eqs. (72). 


