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Abstract This paper investigates the nonlinear dynamic be-

havior of a nonlocal functionally graded Euler–Bernoulli be-

am resting on a fractional visco-Pasternak foundation and

subjected to harmonic loads. The proposed model captures

both, nonlocal parameter considering the elastic stress gra-

dient field and a material length scale parameter considering

the strain gradient stress field. Additionally, the von Karman

strain-displacement relation is used to describe the nonlinear

geometrical beam behavior. The power-law model is utilized

to represent the material variations across the thickness di-

rection of the functionally graded beam. The following steps

are conducted in this research study. At first, the govern-

ing equation of motion is derived using Hamilton’s principle

and then reduced to the nonlinear fractional order differen-

tial equation through the single-mode Galerkin approxima-

tion. The methodology to determine steady-state amplitude-
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frequency responses via incremental harmonic balance me-

thod and continuation technique is presented. The obtained

periodic solutions are verified against the perturbation multi-

ple scales method for the weakly nonlinear case and numer-

ical integration Newmark method in the case of strong non-

linearity. It has been shown that the application of the incre-

mental harmonic balance method in the analysis of nonlocal

strain gradient theory-based structures, can lead to more re-

liable studies for strongly nonlinear systems. In the paramet-

ric study is shown that, on one hand, parameters of the visco-

Pasternak foundation and power-law index remarkable af-

fect the response amplitudes. On the contrary, the nonlocal

and the length scale parameters are having a small influence

on the amplitude-frequency response. Finally, the effects of

the fractional derivative order on the system’s damping are

displayed at time response diagrams and subsequently dis-

cussed.

Keywords Nonlocal strain gradient theory · Functionally

graded beams · Fractional Pasternak layer · Duffing

oscillator · Fractional damping · Incremental harmonic

balance method

1 Introduction

Structures with physical properties which are varied contin-

uously and gradually along a certain direction are known as

functionally graded (FG) materials [17, 38, 60]. The major

advantage of such materials that are emphasized in the engi-

neering practice is that they lack stress concentration, which

is a common problem at interfaces of conventional lami-

nated composites [17, 38]. FG materials are usually com-

posed of two different material phases such as metal and

ceramics. Despite a significant amount of work done in the

field of FG structures, there is still a lot of space and need

for the investigation of MEMS/NEMS systems based on FG
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materials. Nanobeams and nanoplates are utilized in differ-

ent MEMS/NEMS devices [48, 35], such as microactuators

[44, 20], microswitches [70], micro sensors [42], nanoscale

resonators [19], energy harvesting nanodevices [65], etc. For

studying the dynamic behavior of such systems various ap-

proaches based on experiments, molecular dynamics simu-

lations, and continuum mechanics are already employed in

the literature [8, 14, 41, 28, 39, 52]. However, it can be time

and skill-demanding to set up and validate the experiment

or to implement molecular dynamics simulations for such

structures. For these reasons, size-dependent continuum me-

chanics models gain popularity due to their simplicity in pre-

dicting the mechanical behavior of micro/nano-scaled struc-

tural systems. Various non-classical elasticity theories are

used to capture the size effects in micro and nanostructures.

Among them, the most vastly used continuum theories for

studying the nanostructures are: nonlocal elasticity theory

[52, 50, 47], strain gradient theory [28], modified couple

stress theory (or modified strain gradient theory) [67], and

the surface elasticity theory [62]. Some experiments [28] re-

vealed that nonlocal elasticity theory shows limitations in

displaying the stiffness-hardening effect. This deficiency can

be avoided when nonlocal strain gradient theory (NLSGT)

is used as originally described by Lim et al. [36], which in-

cludes both nonlocal and length scale effects into the con-

sideration.

Many studies employed NLSGT when analyzing the me-

chanical behavior of FG structures. Gao et al. [15] investi-

gated the nonlinear free vibration of FG circular nanotubes

using NLSGT and two steps perturbation method. Janevski

[23, 24] studied linear vibration, stability, and buckling of

nonlocal strain gradient Euler-Bernoulli and Timoshenko be-

ams under the influence of temperature. El-Borgi et al. [8]

investigated the free and forced vibration response of a sim-

ply supported FG beam resting on the nonlinear elastic foun-

dation. The authors applied the perturbation method of mul-

tiple scales to obtain the amplitude-frequency curves of the

system. Other authors [21] studied the heat-induced nonlin-

ear vibration of FG capacitive nanobeam within the frame-

work of NLSGT. The semi-analytic perturbation method of

averaging was applied to obtain the governing equations and

study the steady-state responses. They also used a shooting

technique in conjunction with the Floquet theory for cap-

turing the periodic motions and examining their stability.

Wang and Shen [63] investigated the lateral nonlinear vi-

bration of an axially moving simply supported viscoelas-

tic nanobeam based on NLSGT. They used a direct multi-

scale method to obtain the steady-state amplitude-frequency

response in the subharmonic parametric resonance state as

well as the Routh–Hurwitz criterion to determine the stabil-

ity of the (non-) zero equilibrium solution. Jalaei et al. [22]

investigated the dynamic stability of a temperature-depend-

ent Timoshenko functionally graded nanobeam exposed to

the axial excitation load and magnetic field in a thermal en-

vironment. The authors used Navier’s and Bolotin’s method-

based approach to solve the problem. Li et al. [32] studied

the longitudinal vibration of rods also using the NLSGT

and derived analytical solutions for predicting the natural

frequencies and mode shapes for specified boundary con-

ditions. They discovered that the NLSGT rod model exerts

a stiffness-softening effect when the nonlocal parameter is

larger than the length scale parameter and exerts a stiffness-

hardening effect in the opposite case. Li [34] investigated the

vibration of axially FG beams based on NLSGT and Euler-

Bernoulli beam theory and solved the problem via the gen-

eralized differential quadrature method. Simsek [56] pro-

posed a beam model for nonlinear free vibration of an FG

nanobeam with immovable ends based on the NLSGT and

Euler-Bernoulli (EB) beam theory in conjunction with the

von-Karman’s geometric nonlinearity. Liu [37] examined the

nonlinear vibrational behavior of FG sandwich NLSGT nano-

beams in the presence of initial geometric imperfection. Non-

linearity induced by the von Karman theory and a cosine

function similar to the mode shape form is employed to de-

scribe the geometric imperfection mode. They used He’s

variational principle to solve a nonlinear differential equa-

tion and obtain nonlinear frequency. Based on NLSGT, Li

and Hu [31] and Zhen and Zhou [73] studied the wave prop-

agation in fluid-conveying viscoelastic single-walled carbon

nanotubes. Moreover, Li [33] investigated the fluid critical

flow velocities of fluid-conveying microtubes modeled using

NLSGT and Timoshenko and Euler–Bernoulli beam theo-

ries.

Zhang et al. [71] studied the nonlinear dynamic response

of a simply supported fractional viscoelastic beam subjected

to transverse harmonic excitation. By using the averaging

method, the authors obtained a steady-state response of a

single-mode system. Numerical results are determined by an

algorithm based on the fractional-order Grünwald–Letnikov

derivative and verified with analytical results. Eyebe [13]

investigated the nonlinear vibration of a nanobeam resting

on a fractional-order Winkler-Pasternak foundation by us-

ing the D’Alembert principle to obtain the governing equa-

tions and a method of multiple scales to approximate the

resulting nonlinear problem. Further, Lewandowski [29] in-

vestigated the nonlinear, steady-state vibration and stability

of harmonically excited fractional viscoelastic beams. The

viscoelastic material of the beams is described by using the

Zener rheological model with fractional derivatives. Ampli-

tude equations are obtained by using the finite element and

the harmonic balance method in conjunction with the con-

tinuation method.

In the paper [5], a homogeneous Euler Bernoulli beam

on a Winkler-type nonlinear, viscoelastic, and unilateral or

bilateral foundation was considered. The presented model

was subjected to multiple concentrated or distributed trans-



Nonlinear vibration of a nonlocal functionally graded beam on fractional visco-Pasternak foundation 3

verse static or dynamic loads. The IHB method was suited

for obtaining the nonlinear frequency response of the sys-

tem. Obtained and presented amplitude-frequency diagrams

were expectantly similar to diagrams from our study. How-

ever, the considered parameters set were different both re-

garding the loading and the foundation properties. Their in-

terest was the reaction of the foundation, which models foam

materials, both to compression and tension. Instead, we re-

search the influence of the parameters of the fractional-order

model of foundation that can represent a range of differ-

ent materials from foams to rubbers. Furthermore, our nu-

merical calculations were verified with two other numerical

methods, namely with multiple time scales and Newmark

methods.

In this work, a detailed investigation of the nonlinear vi-

bration of the nonlocal strain gradient Euler-Bernoulli beam

resting on the fractional visco-Pasternak foundation and sub-

jected to harmonic loads is performed. The suggested model

contains both, nonlocal parameter considering the nonlo-

cal elastic stress field and a material length scale parame-

ter considering the strain gradient stress field. The following

steps are conducted in this research study. First, the govern-

ing equation of motion is derived using Hamilton’s principle

and then reduced to the nonlinear fractional order differen-

tial equation via Galerkin approximation. The methodology

to determine steady-state amplitude-frequency responses via

incremental harmonic balance method and continuation tech-

nique is presented. The obtained periodic solutions are ver-

ified against the perturbation multiple scales method and

numerical integration Newmark method. At last, a detailed

parametric study is performed to show the influence of power-

law index, nonlocal parameter, length scale parameter, pa-

rameters of fractional visco-Pasternak foundation, and load

factors on the amplitude-frequency response curves of the

proposed nonlinear problem. Additionally, the effects of the

fractional derivative order and power-law index on the sys-

tem’s damping are displayed at time response diagrams and

subsequently discussed.

2 Preliminaries

2.1 Fractional derivative

The vibration of the deformable structures grounded on the

different types of the foundation is present in a wide range

of practical structures. Usually, the impact of the foundation

layer has great importance and has to be modeled appropri-

ately. The model of the foundation with different properties

can be found in the literature [69]. Visco-Pasternak founda-

tion model used in our study was upgraded with fractional-

order time derivatives of the deformation function. This al-

lows us to encompass the whole range of grounds with dif-

ferent properties. We will use the Riemann-Liouville defini-

tion (Eq.(1)) when considering the IHB and multiple scales

solutions and the Grünwald–Letnikov definition (Eq.(2)) in

the case of the Newmark method [49, 58]. The Riemann-

Liouville definition is equal to Grünwald–Letnikov defini-

tion [49], and these two definitions are equivalent for a wide

class of functions and are often used in real physical and

engineering problems. For this reason, we can use one def-

inition and then turn to another when calculating the fre-

quency responses by approximate and numerical methods.

Here, both definitions are given for clarity. The Riemann-

Liouville fractional time derivative can be defined as left or

right, and we will use the left one.

The left Riemann-Liouville derivative of the continuous

and differentiable, on a time interval [a, b], function f (t), is

defined as:

aDα
t f (t) =

1

Γ(n−α)

dn

dtn

∫ t

a

f (τ)

(t − τ)α−n+1
dτ, t ∈ [a,b] ,

(1)

where α is the fractional-order derivative parameter and n ∈
N is a natural number such that n−1 < α < n. To preserve

the physicality of the structure, we limit our investigation to

the case when fractional derivative order is α ∈ [0,1).

Grünwald–Letnikov definition of a fractional derivative

is given as

aDα
t f (t) = lim

h→0

a∆α
t f (t)

hα
, (2)

where

a∆α
t f (t) =

[ t−a
h ]

∑
j=0

(−1) j

(

α

j

)

f (t − jh), (3)

and [x] means the integer part of x.

z

zm c x

L b

h

Physical middle surface

Geometrical middle surface

Fig. 1: Coordinate systems in physical and geometrical mid-

dle surface.

2.2 Functionally graded material

A small-scale FG beam of width b and thickness h is made of

two different materials, and the effective material properties

(e.g. Young’s modulus E and density ρ) vary continuously
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Et ,ρt

Eb,ρb

Kw Kg

q(x, t)

I,A

Fig. 2: Model of the nonlinear nonlocal strain gradient beam

on a fractional visco-Pasternak foundation.

through the beam’s thickness (z direction). Those materials

properties regarding geometrical middle axis based on the

power-law distribution function of material, are:

P(zm) = (Pt −Pb)

(

zm

h
+

1

2

)k

+Pb, (4)

where indices t and b denote the top and bottom layer of

the beam and k is the power-law index, which determines

the material variation in the thickness direction of the beam.

Geometrical and physical middle surfaces of homogeneous

materials coincide. However, the change of material proper-

ties in one direction shifts the physical middle surface from

the geometrical one for some finite length c. Such new sys-

tem of reference for FG materials and structures is proposed

by several authors [3],[30], [56]. Therefore, to simplify the

analysis and avoid the bending-stretching mode coupling ef-

fect we will use a new coordinate system where the x axis

lies in the physical middle surface and the vertical axis is

given as z, i.e.

z = zm + c. (5)

Constant c, denoting the position of the physical middle sur-

face, can be calculated as

c =

∫

h
2

− h
2

zmP(zm)dzm

∫

h
2

− h
2

P(zm)dzm

. (6)

For our case of a rectangular FG beam with width b and

height h, by substituting Eq.(4) in Eq.(6), expression for c is

simplified to

c =
(Et −Eb)hk

2(2+ k)(Et + kEb)
. (7)

By taking the physical middle surface as a reference, ma-

terial properties can be expressed as

E(z) = (Et −Eb)

(

z

h
+

1

2

)k

+Eb, (8)

ρ(z) = (ρt −ρb)

(

z

h
+

1

2

)k

+ρb. (9)
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Fig. 3: The amplitude-frequency response curves of the non-

linear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation are given in sub-figure (a). The

sub-figure (b) is zoomed sub-figure (a). The periodic re-

sponse is obtained by the incremental harmonic balance

(IHB) method - solid line and multiple scales method - cir-

cles.

2.3 Nonlocal strain gradient theory

According to the nonlocal strain gradient theory [36], the

strain energy U can be expressed as:

U =
1

2

∫

V
(σi jεi j +σ

(1)
i jk εi j,k)dV, (10)

where σi j is the nonlocal stress, and σ
(1)
i jk is the high-order

nonlocal stress. Total stress is given by:

ti j = σi j −∇σ
(1)
i jk . (11)
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Fig. 4: The amplitude-frequency response curves of the non-

linear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. The periodic response is ob-

tained by the incremental harmonic balance (IHB) method

- solid line and the multiple scales method - circles.

Constitutive equation for the nonlocal and local part [11] can

be written as:

(1−µ2∇2)σxx = E(z)εxx, (12)

(1−µ2∇2)σ
(1)
xxx = l2E(z)εxx,x, (13)

where µ and l are the nonlocal and length scale parameter,

respectively, ∇= ∂
∂x

, E(z) is the elasticity modulus, εxx is the

axial strain, and εxx,x is the axial strain gradient. The general

nonlocal strain gradient constitutive relation is given as [32]:

(1−µ2∇2)txx = (1− l2∇2)E(z)εxx. (14)

Salehipour et al. [54] and later Batra [4] proposed the

modified nonlocal theory that is applicable to non-homogenous

materials. However, according to [54], when the Laplacian

operator reduces to (∇ = ∂
∂x

) and material properties of the

beam are only the functions of the thickness coordinate z,

then classical Eringen theory can be used to account for

the small-scale effects in FG beams or plates. Moreover, by

introducing the physical surface reference system one can

avoid coupling between the bending and stretching modes.

In our analysis, we adopted both assumptions to study the

nonlinear dynamic response of the FG nonlocal beam rest-

ing on the fractional visco-Pasternak foundation.

3 Beam model and equation of motion

Beam model is given in the Fig.(2). The displacement field

of the Euler-Bernoulli beam is given as:

ux(x,z, t)= u(x, t)−z
∂w

∂x
, uy(x,z, t)= 0, uz(x,z, t)=w(x, t),

0 5 10 15 20 25 30

Ω

0

1

2

3

4

5

6

A
1

Q1 = 0.001

Q1 = 0.002

Q1 = 0.003

Q1 = 0.004

(a)

0 5 10 15 20 25 30

Ω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
3

Q1 = 0.001

Q1 = 0.002

Q1 = 0.003

Q1 = 0.004

(b)

Fig. 5: The amplitude-frequency response curves A1 - sub-

figure (a) and A3 - sub-figure (b) of the nonlinear nonlocal

strain gradient FG beam on fractional visco-Pasternak foun-

dation of the amplitude Q1.

(15)

where ux, uy and uz denote the displacements along the length,

width and thickness directions, respectively. Terms u and w

are the axial and transverse displacements of the physical

middle surface, respectively. Thus, the non-zero strain com-

ponents of Euler-Bernoulli beam with considered geometric

nonlinearity takes the form

εxx =
∂u

∂x
+

1

2

(

∂w

∂x

)2

− z
∂ 2w

∂x2
. (16)
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We are considering the following stress resultants:

Nxx =
∫

A
txxdA, N

(0)
xx =

∫

A
σxxdA, N

(1)
xx =

∫

A
σ
(1)
xx dA,

M =
∫

A
ztxxdA, M(0) =

∫

A
zσxxdA, M(1) =

∫

A
zσ

(1)
xx dA.

(17)

Further, we define the extensional Axx and the bending coef-

ficient Dxx as

{Axx,Dxx}= b

∫ h
2−c

− h
2−c

{1,z2}E(z)dz. (18)

Note that for homogeneous beam Axx = EA and Dxx = EI.

By substituting stress resultants Eq.(17) into Eq.(14), the ax-

ial force and moment are obtained as:

Nxx = N
(0)
xx −

∂N
(1)
xx

∂x
, M = M(0)−

∂M(1)

∂x
. (19)

By integrating the general constitutive relation Eq.(14) over

area A, or multiplying it with z and integrating over area A,

and using relations Eq.(18) and Eq.(17) leads to

Nxx = µ2 ∂ 2Nxx

∂x2
+

(

1− l2 ∂ 2

∂x2

)

Axx

(

∂u

∂x
+

1

2

(

∂w

∂x

)2
)

,

(20)

M = µ2 ∂ 2M

∂x2
−Dxx

(

1− l2 ∂ 2

∂x2

)

∂ 2w

∂x2
. (21)

The variation of strain energy δU of the FG beam can

be given as in [30, 57]:

(22)

δU =
∫

V
(σxxδεxx + σ

(1)
xx ∇δεxx)dV

=
∫ L

0

(

Nxxδ
∂u

∂x
+ Nxx

∂w

∂x
δ

∂w

∂x
− M

∂ 2w

∂x2

)

dx

+

[

N
(1)
xx δ

∂u

∂x
+ N

(1)
xx

∂w

∂x
δ

∂w

∂x
− M(1) ∂ 2w

∂x2

]L

0

.

Virtual kinetic energy considering both the longitudinal and

transverse motions can be given by

(23)

δK = b

∫ L

0

∫ h
2−c

− h
2−c

ρ(z)
∂ux

∂ t
δ

∂ux

∂ t
dzdx

+ b

∫ L

0

∫ h
2−c

− h
2−c

ρ(z)
∂uz

∂ t
δ

∂uz

∂ t
dzdx

=
∫ L

0
m0 (u̇δ u̇ + ẇδ ẇ)dx +

∫ L

0
m2

∂ ẇ

∂x
δ

∂ ẇ

∂x
dx.

Note that in Eq.(23) the mass moments of inertia takes the

following form

{m0,m1,m2}= b

∫ h
2−c

− h
2−c

{1,z,z2}ρ(z)dz. (24)
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Fig. 6: The periodic response obtained by the incremental

harmonic balance (IHB) method and Newmark method is

taken for three different points in Fig.(5).
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Fig. 7: The amplitude-frequency response curves of the non-

linear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation in the first harmonic amplitude

A1 and different values of the nonlocal parameter µ are

given in sub-figure (a). The periodic responses obtained by

the incremental harmonic balance (IHB) method are taken

far from the resonant state in sub-figure (b) and close to the

resonant state in sub-figure (c).

Note that for homogeneous beam m0 = ρA and m2 = ρI.

According to Emam and Nayfeh [9], the first-order mass

moment m1 can be neglected in the virtual kinetic energy

(Eq.(23)) since its contribution is relatively small.

Virtual work of external loads can be given by [2]:

δW =
∫ L

0
(Fmb+q)δwdx+

[

Qδw−Mδ
∂w

∂x

]L

0

, (25)

where

Fm = (kw +KwDα)w− (kg +KgDα)
∂ 2w

∂x2
,

q = Q0 +Q1cosΩ1t.

(26)

In Eq.(25) Fm is the restoring force due to the visco

Pasternak layer, q is the distributed transverse load, Q is the

external shear force, and M is the external bending moment.

In Eq.(26) Dα is the operator of Riemann–Liouville frac-

tional derivative. In [53], a similar foundation type is intro-

duced but without the fractional time derivatives.

Hamilton’s principle will be applied by using the Eq.(27):

∫ t2

t1

(δK −δU −δW )dt = 0. (27)

By substituting Eqs.(22),(23), and (25) into Eq.(27), the fol-

lowing two equations of motion are obtained

∂Nxx

∂x
−m0

∂ 2u

∂ t2
= 0, (28)

∂ 2M

∂x2
+

∂

∂x

(

Nxx

∂w

∂x

)

+m2
∂ 4w

∂x2∂ t2
−m0

∂ 2w

∂ t2
−bFm−q= 0,

(29)

with classical boundary conditions at x = 0 or x = L:

Nxx or u,

∂M

∂x
+Q or w,

(30)

and non-classical boundary conditions at x = 0 or x = L:

N
(1)
xx or

∂u

∂x
,

M(1) or
∂ 2w

∂x2
.

(31)

By assuming the fast dynamics, acceleration in the axial di-

rection in Eq.(28) is negligible. Therefore Nxx =C = const.

Substituting Eqs.(14) and (16) into Eq. (17) , the axial force

Nxx can be written as

Nxx =

(

1− l2 ∂ 2

∂x2

)

Axx

[

∂u

∂x
+

1

2

(

∂w

∂x

)2
]

. (32)
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By substituting Eq.(32) into Eq.(19) one can obtain

N
(0)
xx −

∂N
(1)
xx

∂x
=

(

1− l2 ∂ 2

∂x2

)

Axx

[

∂u

∂x
+

1

2

(

∂w

∂x

)2
]

, (33)

where

N
(0)
xx = Axx

[

∂u

∂x
+

1

2

(

∂w

∂x

)2
]

, (34)

and

N
(1)
xx = l2Axx

[

∂ 2u

∂x2
+

∂w

∂x

∂ 2w

∂x2

]

. (35)

In the case of hinged-hinged beams, the following boundary

conditions are valid:

u(x = 0) = 0, N(1)(x = 0) = 0,

u(x = L) = 0, N(1)(x = L) = 0.
(36)

Substituting Eq.(34) into Eq.(32) and applying the boundary

conditions Eq.(36), one can obtain expression for the axial

force in the following form

Nxx =
Axx

2L

∫ L

0

(

∂w

∂x

)2

dx. (37)

Substituting Eq.(37) and the second equation of motion (29)

into (21) moment M can be expressed as

(38)

M = µ2

[

−
Axx

2L

∫ L

0

(

∂w

∂x

)2

dx
∂ 2w

∂x2
−m2

∂ 4w

∂x2∂ t2
+m0

∂ 2w

∂ t2

+ bFm + q

]

− Dxx

(

1 − l2∇2
) ∂ 2w

∂x2
.

Substituting Eq.(38) in (21), we obtain the size-dependent

nonlinear equations of motion for an FG Euler-Bernoulli

beam model based on the nonlocal strain gradient theory

(39)

(

1 − µ2∇2
)

[

−
Axx

2L

∫ L

0

(

∂w

∂x

)2

dx
∂ 2w

∂x2

− m2
∂ 4w

∂x2∂ t2
+ m0

∂ 2w

∂ t2
+ bFm + q

]

+ Dxx

(

1 − l2∇2
) ∂ 4w

∂x4
= 0.

After substituting relations for the external loads (Eq.(26))

in Eq.(39), it leads to Eq.(40), given by

(40)

(

1 − µ2∇2
)

[

−
Axx

2L

∫ L

0

(

∂w

∂x

)2

dx
∂ 2w

∂x2

− m2
∂ 4w

∂x2∂ t2
+ m0

∂ 2w

∂ t2
+ bkww + bKwDα w

− bkg

∂ 2w

∂x2
− bKgDα ∂ 2w

∂x2
+Q0 +Q1cosΩ1t

]

+ Dxx

(

1 − l2∇2
) ∂ 4w

∂x4
= 0.

We introduce the following nondimensional parameters:

X =
x

L
, W =

w

kx

, Σ =
l

L
, λ =

µ

L
, ζ =

b

L
, τ = tS

τα = tα Sα , S =
kx

L2

√

Axx

m0
y =

m2

m0L2
, F0 =

Q0L4

Axxk3
x

F1 =
Q1L4

Axxk3
x

, Ω = Ω1
L2

kx

√

m0

Axx

, k1 =
ζ kwL5

Axxk2
x

,

K1 =
ζ KwL5

Axxk2
x

Sα , k2 =
ζ kgL3

Axxk2
x

, K2 =
ζ KgL3

Axxk2
x

Sα .

(41)

Note that kx, appearing in Eq.(41), is the radius of gyra-

tion, defined in Eq.(42) as

kx =

√

Dxx

Axx

. (42)

For the homogenous beam kx =
√

Ix
A

. Using nondimen-

sional parameters from Eqs.(41) in Eq.(40) nonlinear equa-

tion of motion is transformed into the following nondimen-

sional form

(43)

(

1 − λ 2 ∂ 2

∂X
2

)

[

−
1

2

∫ 1

0

(

∂W

∂X

)2

dX
∂ 2W

∂X
2

− y
∂ 4W

∂X
2
∂τ2

+
∂ 2W

∂τ2
+ k1W + K1Dα

τ W

− k2
∂ 2W

∂X
2
− K2Dα

τ

∂ 2W

∂X
2
+ F0 + F1 cosΩτ

]

+

(

1 − Σ2 ∂ 2

∂X
2

)

∂ 4W

∂X
4
= 0.

The solution of Eq.(43) could be assumed as a sum of

products of amplitude and time functions for each mode.

The most usual is single-mode discretization which has been

used by many authors (For example [8, 13, 16, 18, 21, 29,

32, 36, 53, 56, 61, 62]), and a solution would be assumed

as in Eq.(44). In our case, this is legitimate, since we have

only cubic nonlinearity, and Nayfeh and Lacarbonara have

shown in their study [45] that in certain cases one-mode

Galerkin approximation fails to predict the dynamic behav-

ior of hinged-hinged beams, especially when quadratic type

nonlinearity is involved and even modes are observed in cer-

tain subharmonic or superharmonic resonance conditions.

W
(

X ,τ
)

= φn

(

X
)

q(τ), (44)

where φn

(

X
)

is the amplitude function, q(τ) is the time

function and n = 1,2, ... is the mode number. Coefficients
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Fig. 8: The amplitude-frequency response curves of the non-

linear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation for the third harmonic ampli-

tude A3 for different values of the nonlocal parameter µ ,

sub-figure (a). The periodic response obtained by the incre-

mental harmonic balance (IHB) method is taken close to the

resonant state in sub-figure (b) and far from the resonant

state in sub-figure (c).

s0 − s5 are calculated as

{s0,s1,s2,s3,s4,s5}=
∫ 1

0
{φ ,φ 2,φ ′′φ ,φ IV φ ,φV Iφ ,φ ′2}dX .

(45)

By replacing Eq.(44) into Eq.(43), and using Eq.(45) we

obtain the following nonlinear fractional-order differential

equation

q̈+ γDα
τ q+ω2

0 q+θq3 = f0 + f1 cosΩτ, (46)

where parameters are given as

γ =
K1s1 −K2s2 −λ 2K1s2 +λ 2K2s3

s1 − ys2 −λ 2s2 + yλ 2s3
,

ω2
0 =

k1s1 − k2s2 −λ 2k1s2 +λ 2k2s3 + s3 −Σ2s4

s1 − ys2 −λ 2s2 + yλ 2s3
,

θ =
− 1

2
s5s2 +

1
2
s5s3λ 2

s1 − ys2 −λ 2s2 + yλ 2s3
,

f0 =
−s0F0

s1 − ys2 −λ 2s2 + yλ 2s3
,

f1 =
−s0F1

s1 − ys2 −λ 2s2 + yλ 2s3
.

(47)

Note that Eq.(40) could have been nondimensionalized

in many ways. Among them, the optimal one is given in

this paper. Radius of gyration kx (Eq.(42)) is introduced in

nondimenzionalization process with the purpose to reduce

nonlinear parameter θ in Eq.(46). Extreme high values of

θ comparing to linear stiffness parameter ω2
0 would later

induce problems with solving fractional-order differential

equation of motion (Eq.(46)).

4 Nonlinear periodic response

Analytical perturbation methods such as the multiple scales

method are usually used to solve the nonlinear fractional dif-

ferential equations in the case of weak nonlinearity [55]. For

strong nonlinearities, it is more common to use numerical

methods such as the differential quadrature method (DQM)

[40] or incremental harmonic balance (IHB) method [46]. A

brief review of available numerical methods for solving the

aforementioned nonlinear fractional differential equations is

given by Zhou et al. [74]. In this study, periodic solutions

found by the IHB method are verified with the results from

both the perturbation multiple scales and Newmark numeri-

cal method.

4.1 The incremental harmonic balance method

IHB method has established reference quotations for solving

the nonlinear structural problems. Among others, Dou and
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Fig. 9: The amplitude-frequency response curves of the non-

linear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation in the first harmonic amplitude

A1 and different values of the length scale parameter l are

given in sub-figure (a). The periodic response obtained by

the IHB method and taken far from the resonant state is

given in sub-figure (b) and close to the resonant state in sub-

figure (c).
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Fig. 10: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation in the third harmonic amplitude

A3 for different values of the length scale parameter l are

given in sub-figure (a). The periodic response obtained by

the IHB method taken close to resonant state is given in sub-

figure (b), and far from the resonant state in sub-figure (c).
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Jensen [7] developed a method for optimizing the nonlinear

structural resonance with time-harmonic loads by using the

IHB. Karlicic et al. [25] used IHB and perturbation method

of multiple scales for investigation of the dynamic behavior

and stability for a single wall carbon nanotube modeled as a

nonlinear nanobeam embedded in a Kelvin-Voigt viscoelas-

tic medium. IHB method was also employed for studying

the coupled Duffing oscillators [26] and parametrically am-

plified Mathieu-Duffing oscillator [27] used for energy har-

vesting purposes.

To apply the IHB method, we introduce a new time scale

τ = Ωτ into Eq.(46) to obtain the system of nonlinear ordi-

nary differential equations in the following form

Ω2 d2q

dτ2
+ γΩα Dα

τ q+ω2
0 q+θq3 = f0 + f1 cosτ. (48)

For the arbitrarily chosen initial values for q0 and Ω0 of the

steady-state modal amplitude, a neighboring state of motion

has the incremental changes to the current state and can be

expressed in the following form

q = q0 +∆q, Ω = Ω0 +∆Ω. (49)

Substituting Eq.(49) into Eq.(48) and neglecting higher-order

terms, we obtain a linearized incremental relation given as

(50)Ω2∆q′′ + γΩα
0 Dα

τ ∆q + ω2
0 ∆q + 3θq2

0∆q

= r − 2Ω0q′′0∆Ω f0 + f1 cosτ,

where r is residual term given as

r =−
(

Ω2
0q′′0 + γΩα

0 Dα
τ q0 +ω2

0 q0 +θq3
0

)

. (51)

To obtain the periodic solutions of the fractional-order

differential equation, q0 and ∆q are expanded as a finite

Fourier series of N terms as

q0 = a0 +
N

∑
n=1

[an cos(nτ)+bn sin(nτ)] =CA0, (52)

∆q = ∆a0 +
N

∑
n=1

[∆an cos(nτ)+∆bn sin(nτ)] =C∆A, (53)

where

C = [1 cosτ cos2τ ... cosNτ sinτ sin2τ ... sinNτ] ,

(54)

A0 = [a0 a1 a2 ... aN b1 b2 ... bN ]
T , (55)

∆A = [∆a0 ∆a1 ∆a2 ... ∆aN ∆b1 ∆b2 ... ∆bN ]
T . (56)

We substitute Eqs.(52),(53),(54),(55) and (56) into Eq.(50),

and apply the Galerkin procedure. Since a fractional-order

derivative is an aperiodic function, in the integration pro-

cedure we choose the time period T = ∞ and average the

integration results for the fractional derivative. In the same

way, for the periodic function, we choose the time terminal

as T = 2π , which leads us to the following system of equa-

tions

(57)

1

2π

∫ 2π

0
(δ∆q)T

[

Ω2∆q′′ + ω2
0 ∆q + 3θq2

0∆q
]

dτ

+
1

T

∫ T

0
(δ∆q)T [γΩα Dα

τ ∆q]dτ

=
1

2π

∫ 2π

0
(δ∆q)T

[

−Ω2q′′0 − ω2
0 q0 − θq3

0

+ f0 + f1 cosτ
]

dτ −
1

T

∫ T

0
(δ∆q)T [γΩα Dα

τ q0]dτ

−
1

2π

∫ 2π

0
(δ∆q)T

[

2Ω0q′′0
]

dτ∆Ω.

This gives us a system of linearized algebraic equations in

terms of ∆A in the following form

M∆A+V ∆Ω = R, (58)

where elements of the Jacobi matrix M, the corrective vector

R, and vector V are given in Appendix 1.

In case that we want the solution at a given single fre-

quency, we would set ∆Ω to zero in Eq.(58). Otherwise, we

would solve Eq.(58) for both A and ∆Ω, but insert ∆Ω in the

first entry of the vector ∆A and transform the system of equa-

tions. We initialize solution process by entering guessed val-

ues of A, and calculate ∆A using Eq.(58). The solution ∆A is

then added to the current estimated value of A to determine

the new vector A, i.e,

Ak+1 = Ak +∆A. (59)

We repeat this process until the value of the residuum norm

|R| is within preset tolerance (in our case less than 10−5).

4.2 The continuation method

For starting the recurrent continuation process we need to

obtain the periodic response in two successive points by us-

ing the IHB method. These initial points are usually taken

far from the resonant state, where response amplitudes for

both of them are having similar and small values. Then we

apply the predictor-corrector method to carry out point-to-

point computation for determining the corresponding branches

of the frequency responses. Eq.(58) can be rewritten in the

more general matrix form as

[M V ]

[

∆A

∆Ω

]

= R. (60)
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Fig. 11: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

are plotted for different values of the parameter Kw.

We introduce new vectors X = [A Ω]T and ∆X = [∆A ∆Ω]T .

Let us also introduce a function g(X) of vector X in the fol-

lowing form: Eq.(61). Note that the function g(X) can be

defined in many ways, but the one given in Eq.(61) is the

most appropriate

g(X) = XT X . (61)

We will also introduce arc-length parameter η to follow the

direction of the path. An augmented equation would be

g(X)−η = 0. (62)

The slope can be determined by using the two previous known

points Xk−1 and Xk−2 on the response curves, such as

X ′ =
Xk−1 −Xk−2

‖Xk−1 −Xk−2‖
. (63)
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Fig. 12: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

are plotted for different values of the parameter kw.

The first prediction of the next point can be determined by

Xu = Xk−1 +∆ηX ′. (64)

Eq.(60) can be extended with Eq.(62), and then the tangent

stiffness matrix and residual vector can be given in the fol-

lowing form

[

M V
∂g

∂A
∂g
∂Ω

]

[

∆A

∆Ω

]

=

[

R

∆η −g

]

. (65)

More information about the continuation method can be found

in [10, 5, 64].
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5 Numerical results

The methodology outlined in the previous section is uti-

lized herein to find the solution of the fractional-order forced

Duffing differential equation Eq.(46) and examine the reso-

nance of a nonlocal FG beam on a fractional visco-Pasternak

foundation. The combination of the IHB and path-following

methods are introduced to trace branches of periodic so-

lutions of a nonlinear model of a nonlocal strain-gradient

beam on a fractional visco-Pasternak foundation with direct

transversal harmonic excitation. The obtained diagrams are

showing periodic responses given in the form of amplitude-

frequency curves. Firstly, beam natural frequency for two

different models, obtained by simplifying our model, are

verified for the data available in the literature (Tables 1 and

2). In the second part of the numerical study, the validity of

the results from the IHB method is examined (Figs.(3,4,6)),

which is then followed by the parametric study in the fre-

quency (Figs.(5,7-16)) and time-domain (Fig.(17)). It is demon-

strated that the fractional visco-Pasternak layer has a signif-

icant influence on the response amplitudes. Moreover, the

results obtained by the IHB method are verified with the re-

sults from multiple scales and the Newmark method. The

last part of the numerical results section is devoted to the

analysis of the influence of different parameters on the re-

sponse. The results revealed the importance of the first and

third harmonics. The parameter values of the presented me-

chanical model are adopted from the paper [30], extended

with parameters for fractional Pasternak layer and FG mate-

rial, and presented in Table 3. The static part of the excitation

force Q0 is set to zero and the dynamic part Q1 is given in the

table. When some parameter is varied remaining coefficients

are taken from the Table 3. Moreover, it should be noted

that the number of adopted harmonics in the Fourier series

is N = 6 and this is used in all numerical examples. The

amplitudes obtained by the IHB method and corresponding

to particular Fourier coefficients (Eq.(55)) and harmonics

(Eq.(54)) are computed as given in Eq.(66),

A0 = a0, Ai =
√

a2
i +b2

i , (i = 1,2, . . . ,N). (66)

For verification with the multiple scale method, a small non-

dimensional bookkeeping parameter takes the value ε = 0.01.

5.1 Verification

To check the derivation of the equation of motion, eigenfre-

quencies of two simplified models are computed and com-

pared with results obtained by other authors. Table 1 com-

pares the first five non-dimensional fundamental natural fre-

quencies of a local Euler-Bernoulli beam resting on Winkler-

Pasternak foundation for the simply supported boundary con-

ditions with foundation parameters k1 = 25, k2 = 25 with

Table 1: The first five non-dimensional fundamental nat-

ural frequencies of a local Euler-Bernoulli beam resting

on Winkler-Pasternak foundation for the simple-supported

boundary conditions (k1 = 25,k2 = 25)

Present Ref.[59] Ref.[13] Ref.[68] Ref.[43]

19.2133 19.2133 19.2133 19.21 19.2178

50.7002 50.7002 50.7002 50.7 50.7804

100.6767 100.677 100.6767 100.7 -

170.0281 170.028 170.0281 170.1 -

258.9868 258.987 258.9868 259.1 -

Table 2: Comparison of non-dimensional fundamental

natural frequencies of simply supported nonlocal Euler-

Bernoulli beam with different nonlocal parameters µ

(L = 10, h = 1, ρ = 1, E = 30 ·106, ν = 0.3.)

µ Present Ref.[52] Ref. [1] Ref.[72]

0 9.8293 9.8696 9.8298 9.8696

1 9.3774 9.4159 9.3814 9.4159

2 8.9826 9.0195 8.9892 9.0195

3 8.6338 8.6693 8.6424 8.6693

4 8.3228 8.3569 8.3329 8.3569

Table 3: Parameter values of the presented mechanical

model

Parameter Symbol Value

Fractional derivative α 0.5

Young’s modulus at top Et 390 GPa

Young’s modulus at bottom Eb 210 GPa

Density at top ρt 3960 kg/m3

Density at bottom ρb 7800 kg/m3

Power-law index k 1

Height of the beam h 100 nm

Width of the beam b 1 µm

Length of the beam L 10 µm

Nonlocal parameter µ 10 nm

Length scale parameter l 100 nm

Winkler coeff. of viscoelastic layer kw 0.0001 m−1

Winkler coeff. of viscoelastic layer Kw 0.0001 Nsα/m3

Pasternak coeff. of viscoelastic layer kg 0.0001 m

Pasternak coeff. of viscoelastic layer Kg 0.0001 Nsα/m

Amplitude of excitation force Q1 0.003 N

values obtained by other authors [59, 13, 68, 43], where fine

agreement can be observed. Besides that, we made a com-

parison of non-dimensional fundamental natural frequencies

of simply supported nonlocal Euler beam with different val-

ues of nonlocal stress-gradient parameter µ with data avail-

able in the literature [52, 1, 72]. Results are in good agree-

ment.
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Fig. 13: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

for different values of the parameter Kg.

With the purpose of demonstrating the reliability and ac-

curacy of the proposed approach for the determination of

the amplitude-frequency responses and corresponding peri-

odic solutions, the obtained results from the IHB are verified

with two different approaches - the perturbation method of

multiple scales and the direct numerical integration by us-

ing the Newmark method. The first one is used to obtain the

amplitude-frequency response diagrams, and the second one

to capture periodic motions at desired excitation frequen-

cies. The way we applied the Newmark method to solve the

nonlinear fractional differential equation of motion Eq.(48)

is given in Appendix 3 thoroughly.

First, we will verify the results by comparing the steady-

state frequency responses for the superharmonic resonance

case Ω = 1
3
ω0 obtained by the IHB method with the results

0 5 10 15 20 25

Ω

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
1

kg = 10
−4

kg = 0.2

kg = 0.5

kg = 1

(a)

0 5 10 15 20 25

Ω

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
3

kg = 10
−4

kg = 0.2

kg = 0.5

kg = 1

(b)

Fig. 14: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

for different values of the parameter kg.

from the multiple scales method, as given in Fig.(3) and

Fig.(4). In these figures, response amplitudes corresponding

to displacement are given on the ordinate axis while excita-

tion frequency Ω is on the abscissa.

In Fig.(3) the amplitude-frequency response curves are

given for amplitudes A3 obtained by the IHB, and ampli-

tudes corresponding to the excitation frequency Ω = 1
3
ω0

obtained by using the multiple scales method. Fractional

parametar α is varied. Fig.(3) (b) is zoomed Fig.(3) (a) that

enables one to clearly compare the obtained results. Data in

Fig.(3) reveals that results obtained by these two methods

match well. Besides that, we can also observe that an in-

crease of α decreases the amplitude, which is slightly shifted

to the right towards higher frequencies.
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In Fig.(4) the frequency response curves are given for

amplitudes A3 obtained by using the IHB method and am-

plitudes corresponding to the excitation frequency Ω = 1
3
ω0

obtained by using the multiple scales method. External exci-

tation magnitudes are given as: Q1 = 0.001, Q1 = 0.002, and

Q1 = 0.003. From this figure, we can observe a good match-

ing between the result obtained by two different methods.

Besides that, we can also observe that an increase of the ex-

ternal excitation magnitude increases the amplitude and shift

its value to the right towards higher frequencies.

In Fig.(5)(a) and Fig.(5)(b) the frequency response curves

are given for the amplitudes A1 and A3, respectively, which

are given on the ordinate axis while the excitation frequency

Ω is on the abscissa. Due to the stiffness-hardening effect

of the external excitation force parameter, not only does the

maximum amplitude experience a rise but also the frequency

response curves are shifted towards higher excitation fre-

quencies. This shifting can be observed for both, the first

(Fig.(5) a)) and third harmonic amplitude (Fig.(5) b)). Also,

an increase of the external excitation amplitude causes a sig-

nificant bending of the amplitude-frequency curves so that

the multiple-value solutions may exist in the primary reso-

nance case associated with the first and the third harmonic

amplitude. Three periodic orbits are selected from the re-

sponse curves (marked as star points on Fig.(5)), which are

then verified with Newmark-based solutions. The periodic

solutions are depicted in the phase plane, where the veloc-

ity is given on the ordinate axis while the displacement is

given on the abscissa, as shown in sub-figures a), b) and c)

of Fig.(6). We picked two points close and one far from the

resonant state (Fig.(5)). From Fig.(6) we can observe a good

matching between the result obtained by the IHB and New-

mark method. However, better overlapping is achieved when

we are far from the resonant state.

5.2 Parametric study

In the subsequent examples in this chapter, we have shown

the influence of different parameters such as nonlocal pa-

rameter, strain gradient parameter, power-law index, and pa-

rameters of fractional visco-Pasternak foundation on ampli-

tude-frequency response. The influence of excitation force

is discussed in the previous subsection.

Fig.(7) and Fig.(8) show the amplitude-frequency response

of the nonlinear nonlocal strain gradient FG beam on a frac-

tional visco-Pasternak foundation with external excitation

for the first A1 and the third A3 harmonic amplitudes, respec-

tively, and different values of the nonlocal parameter µ . In

the sub-figures b) and c) are presented magnified parts of the

sub-figure a). From the observation of Fig.(7) and Fig.(8), it

could be found that variations in the nonlocal parameter are

having weak influence in both the first and the third har-

monic vibration amplitudes. Due to the large non-linearity
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Fig. 15: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

for different values of fractional parameter α .

and stiffness of the system, the influence of the nonlocal pa-

rameter on amplitude-frequency response is small. In other

words, nonlinearity reduces nonlocal parameter influence on

the dynamic response of the system.

The amplitude-frequency response curves for different

values of the length scale parameter l are given in Fig.(9)

and Fig.(10) for the first A1 and the third A3 harmonic ampli-

tudes, respectively. In the sub-figures b) and c) are presented

magnified parts of the sub-figure a). We observe that varia-

tion of the length scale parameter l has a small influence on

vibration amplitudes for the primary resonance case and the

maximum value. Due to the large non-linearity and stiffness

of the system, the influence of the length scale parameter

on amplitude-frequency response is small. In other words,
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Fig. 16: The amplitude-frequency response curves of the

nonlinear nonlocal strain gradient FG beam on a fractional

visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)

for different values of the power-law index k.

nonlinearity reduces length scale parameter influence on the

dynamic response of the system.

The amplitude-frequency response curves are given for

the first A1 (Fig.(11) a)) and the third harmonic amplitude A3

(Fig.(11) b)) and variations of the fractional visco-Pasternak

foundation parameter Kw. One can observe that an increase

of Kw decreases the amplitude and therefore enlarges the to-

tal stiffness of the system. Moreover, an increase of Kw as

damping parameter decreases the natural frequencies of the

system and therefore the resonance frequency is shifted to

the left. Besides that, by looking at the data in-depth, it can

be observed that the angle of curve tilt decreases together

with the amplitude towards the curvature center for an in-

crease of Kw, which at the same time results in weakening

of the hardening type nonlinear behavior.

Fig.(12) shows the amplitude-frequency response curves

for the first A1 (Fig.(12) a)) and the third harmonic ampli-

tude A3 (Fig.(12) b)) and variations of the foundation param-

eter kw. One can observe that an increase of kw decreases the

amplitude with the stabilizing effect to the system vibrations

and therefore the total stiffness of the system is enlarged.

Besides that, an increase of kw as a damping parameter de-

creases the natural frequencies of the system and shifts the

resonance frequency to the right.

The amplitude-frequency response curves in the first A1

(Fig.(13) a)) and the third harmonic amplitude A3 (Fig.(13)

b)) are given for different values of the fractional visco-

Pasternak foundation parameter Kg. One can notice that an

increase of the parameter Kg decreases the resonance am-

plitude that is shifted to the left. This indicates that raise of

Kg augments the total stiffness of the system. Furthermore,

an increase of the parameter Kg causes weakening of the

nonlinear hardening behavior of the response. Namely, the

hardening-type nonlinearity becomes more apparent when

the damping parameter Kg is small.

Fig.(14) shows the amplitude-frequency response curves

for the first A1 (Fig.(14) a)) and the third harmonic ampli-

tude A3 (Fig.(14) b)) for different values of the foundation

parameter kg. One can notice that an increase of the parame-

ter kg decreases the resonance amplitude that is shifted to the

right significantly enlarging the hardening effects of nonlin-

earity. This indicates that raise of kg increases the total stiff-

ness of the system.

By comparing the variation of Kw,kw,Kg,kg, one can ob-

serve that an increase of the parameter Kg has a bigger in-

fluence on the increasing total stiffness of the system than

the parameter Kw, even though both parameters contribute

to the amplitude decrease. However, kg and kw have similar

effects of moving the amplitude-frequency curve to the right

towards the higher values of the external frequency with the

light reduction of amplitude values.

The amplitude-frequency response curves in the first A1

(Fig.(15) a)) and the third harmonic amplitude A3 (Fig.(15)

b)) are given for different values of the fractional-order deriva-

tive α in the model of visco-Pasternak foundation. It can be

noticed that a decrease of the fractional-order parameter α

by a step of 0,05 increases the amplitude values by almost

double in the primary resonance case. This significant influ-

ence of the parameter α is caused by damping features of

the system become less pronounced due to the elastic-like

behavior of the fractional term. Moreover, a decrease of the

fractional derivative parameter α makes the equivalent stiff-

ness coefficient larger, which results in the rightwards bend-

ing of the amplitude-frequency curves and larger primary

resonance frequencies.

Amplitudes of the first A1 (Fig.(16) a)) and the third har-

monic A3 (Fig.(16) b)) of the amplitude-frequency response

are given for different values of the power-law index k that



Nonlinear vibration of a nonlocal functionally graded beam on fractional visco-Pasternak foundation 17

defines the FG material. One can notice that for k = 1 and

k = 3 the resonant frequencies and hysteresis domain be-

comes larger and more shifted and bent towards the posi-

tive direction of lateral axis than for the case when k = 2

and k = 4. This can be attributed to increased stiffness prop-

erties of the nonlocal beam for these uneven values of the

power-law index that increases the hardening nonlinearity

and stiffness features of the system.

5.3 Time response

In this section, we show the time responses of the system

obtained via the Newmark method. The influences of the

fractional-order derivative parameter α (Fig.(17)) are stud-

ied to show their effect on the time-dependent behavior of

the system. To understand the influence of the fractional

visco-Pasternak layer on the initial harmonic excitation of

the beam, the following initial conditions are adopted q(0)=

1, q̇(0) = 1. We adopted the following values of fractional

parameter α = 0.5,0.6,0.7. The dimensionless time period

T = 200 is used in the simulation. Similar conclusions can

be drawn here as for the amplitude-frequency response. One

can observe that an increase of the fractional parameter α

leads to stronger damping in time and reduced and attenu-

ated amplitudes of the response. Also, a weak beating phe-

nomenon with decreasing intervals in time can be observed.

0 50 100 150 200

τ

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q
(τ
)

α = 0.5
α = 0.6
α = 0.7

(a)

Fig. 17: The time response curves of the nonlinear nonlo-

cal strain gradient FG beam on a fractional visco-Pasternak

foundation. Amplitudes for different values of the fractional

derivative parameter.

5.4 Summary of the numerical results

The following conclusions can be drawn about the results

presented in this section. The hardening-type nonlinearity

becomes more apparent when the force increases and the

following parameters decrease: nonlocal parameter µ , strain-

gradient length scale parameter l, parameters of visco-Paster-

nak foundation α,Kw,Kg. If we increase the external excita-

tion amplitude in this system, the primary resonances will be

strengthened and shifted rightwards i.e. towards higher exci-

tation frequencies. In this case, the hysteresis domain would

also increase. Nonlocal and length scale parameters are both

having a small influence on the amplitude-frequency respon-

se. Parameters of the visco-Pasternak foundation Kw and Kg

augments the total stiffness of the system since their in-

creasing cause response amplitudes decreasing. Specifically,

foundation parameters Kw and kw have smaller influence on

amplitude-frequency response comparing to parameters Kg

and kg. The even values of power-law index k causes higher

amplitude values in comparison to their odd values.

In addition, we remark on the mutual interactions of the

regime in the time domain of the single-amplitude mode

of beam vibration. This is observed from the amplitude-

frequency diagrams of the first mode A1, Figs. 7, 9-16, a

small jump in amplitude in the region of external frequency

about 5, before the resonant region, which corresponds to

the contribution of resonant jumps of the third amplitude

A3. The amplitude of the third mode A3 has a resonant range

around this frequency and their values go up to values that

can be registered for these small jumps on the amplitude di-

agrams of the first mode A1. The second resonant region of

the third amplitude A3 is in the same frequency domain as

the one of the first amplitude A1, the interval 15−25. Thus,

the changes of the A1 diagram from this interval are con-

tributed also by the behavior of the third amplitude A3 in

this interval.

6 Conclusions

In this paper, we analyzed the nonlinear vibration problem

of a nonlocal beam resting on the fractional visco-Pasternak

foundation by using the nonlocal strain-gradient theory and

fractional order damping. The governing equation is derived

by using Hamilton’s principle and then discretized via the

Galerkin approximation, which yields a corresponding non-

linear fractional-order forced Duffing type differential equa-

tion. The solution is sought for the steady-state superhar-

monic resonance conditions by using the perturbation mul-

tiple time scales method for the weakly nonlinear case and

IHB and Newmark method for the strongly nonlinear case.

From the verification study, it is revealed that the IHB method

is in good agreement with the multiple time scales analysis
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for the weakly nonlinear case and with the numerical New-

mark method for the strongly nonlinear case. The main ad-

vantage of the IHB method over the multiple scales method

lies in the fact that it does not require an introduction of

small parameter and thus strong nonlinearity cases can be

observed. On the other side, the superiority of the IHB over

the Newmark approach is the simple computational imple-

mentation and easier determination of periodic solutions.

We have also shown that the introduction of the IHB method

in the analysis of NLSGT structures can lead to more reli-

able studies of strongly nonlinear systems. In our paramet-

ric study, we concluded that the nonlocal and length scale

parameters are having a small influence on the amplitude-

frequency response. On the other hand, parameters of the

visco-Pasternak foundation remarkably affect the response

amplitudes. Finally, the power-law index displays a signif-

icant effect on the frequency response, which was also dis-

cussed in the numerical analysis. Generally speaking, the

system vibration amplitudes are higher for the odd values of

the power-law index comparing to materials with the even

values of this parameter.
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[26] Danilo Karličić et al. “Nonlinear energy harvester with

coupled Duffing oscillators”. In: Communications in

Nonlinear Science and Numerical Simulation (2020),

p. 105394.
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Appendix 1

Elements of the Jacobi matrix M = M1 +Mα
2 , the corrective

vector R = R1 +Rα
2 , and vector V =V1 +V α

2 are defined as:

M1 =
1

2π

∫ 2π

0

[

Ω2CT d2C

dτ2
+ω2

0CTC+3θq2
0CTC

]

dτ, (67)

Mα
2 =

1

T

∫ T

0
CT [γΩα Dα

τ (C)]dτ, (68)

R1 = −
1

2π

∫ 2π

0

[(

Ω2CT d2C

dτ2
+ ω2

0CTC + θq2
0CTC

)

dτA0

+ f0CT + f0 cosτCT

]

dτ,

(69)

Rα
2 =−

1

T

∫ T

0
CT [γΩα Dα

τ (C)]dτA0, (70)

V1 =
1

2π

∫ T

0

[

2Ω0CT d2C

dτ2

]

dτA0, (71)

V α
2 = 0. (72)

Within each incremental step, only a set of linear equations

Eq.(58) has to be solved to obtain the data for the next stage.

By applying the procedure established at [66, 46] elements

of the matrix Mα
2 , and vectors Rα

2 and V α
2 can be expressed

as

Mα
2 =

[

[M11]
α [M12]

α

[M21]
α [M22]

α

]

, Rα
2 =





Rα
10

Rα
1

Rα
2



 , V α
2 =





V α
10

V α
1

V α
2



 .

(73)

Elements of matrix Mα
2 , and vectors Rα

2 and V α
2 from Eq.(73)

are:

[M11]
α
i j = δi jγΩα iα

2
cos
(απ

2

)

,

i = 0,1,2, ...,N, j = 0,1,2, ...,N,

[M12]
α
i j = δi jγΩα iα

2
sin
(απ

2

)

,

i = 0,1,2, ...,N, j = 1,2, ...,N,

[M21]
α
i j =−δi jγΩα iα

2
sin
(απ

2

)

,

i = 1,2, ...,N, j = 0,1,2, ...,N,

[M22]
α
i j = δi jγΩα iα

2
cos
(απ

2

)

,

i = 1,2, ...,N, j = 1,2, ...,N,

(74)

Rα
10 = 0,

Rα
1i =−γΩα

[

ai

iα

2
cos
(απ

2

)

+bi

iα

2
sin
(απ

2

)

]

,

i = 1,2, ...,N,

Rα
2i =−γΩα

[

ai

iα

2
sin
(απ

2

)

+bi

iα

2
cos
(απ

2

)

]

,

i = 1,2, ...,N,

(75)

V α
10 = 0,

V α
1i = γαΩα−1

[

ai

iα

2
cos
(απ

2

)

+bi

iα

2
sin
(απ

2

)

]

,

i = 1,2, ...,N,

V α
2i = γαΩα−1

[

ai

iα

2
sin
(απ

2

)

+bi

iα

2
cos
(απ

2

)

]

,

i = 1,2, ...,N,

(76)

where δi j is Kronecker delta.
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Appendix 2

Multiple scales method

Multiple scales is the analytical perturbation method for

constructing approximate solutions of nonlinear differential

equations. This method is well established in the literature

but it is only valid for small nonlinearities and damping.

Therefore, we will use it here only for validation purposes.

Eq.(46) is well known as the forced Duffing fractional-order

differential equation, which can be expressed in terms of

small scale parameter ε as in Eq.(77). Let assume for sim-

plicity f0 = 0, f = f1.

q̈+ εγDα
τ q+ω2

0 q+ εθq3 = f cosΩτ. (77)

Here, we introduce new parameters as γ = εγ and θ = εθ .

The small bookkeeping parameter ε is put in front of the

fractional and nonlinear terms to have weak damping and

weak nonlinearity. Please note that the forcing term in Eq.(77)

is of the order one (also known as hard forcing) which will

help us to study secondary resonances in the system by using

the perturbation analysis of the first order. Forcing of order

ε would indicate a primary resonance that is the same as in

the Duffing equation [51].

Using the multiple scales method, we will seek the solution

of Eq.(77) in the following form:

q(T0,T1,ε) = q0(T0,T1)+ εq1(T0,T1)+ · · · . (78)

Here, T0 = τ is the fast time scale and T1 = ετ is the slow

time scale. We will analyze the system for superharmonic

resonance conditions. Firstly, let us define the time deriva-

tives as

d

dτ
= D0 + εD1 +O(ε2), (79)

d2

dτ2
= D2

0 +2εD0D1 +O(ε2), (80)

Dα = Dα
0+− εαDα−1

0+ D1 + · · · , (81)

where Dn = ∂
∂Tn

,(n = 0,1,2, . . .) and Dα−n
n+ = ∂ α−n

∂T α−n
n+

,(n =

0,1,2, . . .) are classical and Riemann-Liouville’s fractional

derivative for new time scales [55]. For the fractional deriva-

tive of the exponential function [55], restricted to the first

and second-order approximations, the following relationship

will be used:

Dα
0+ expiωτ = (iω)α expiωτ , (82)

where i is the imaginary unit. Substituting Eqs. (78), (79),

(80), (81) into Eq.(77) and then extracting coefficients of ε0

and ε1 we obtain the following equations

ε0 : D2
0q0 +ω2

0 q0 = f cosΩτ, (83)

ε1 : D2
0q1 +ω2

0 q1 =−2D0D1q0 − γDα
0+q0 −θq3

0. (84)

The solution of Eq.(83) is sought in the form

q0 = A(T1)e
iω0T0 +ΛeiΩT1 +A(T1)e

−iω0T0 +Λe−iΩT1 , (85)

where A is a complex function in terms of slow time scale,

and Λ is defined as

Λ =
f

2(ω2
0 −Ω2)

. (86)

Superharmonic resonance 3Ω ≈ ω0

Since we have only cubic nonlinearity in Eq.(77), we

will consider the case when 3Ω = ω0 + εσ , where σ is the

detuning parameter. By substituting q0 from Eq.(85) into

Eq.(84) and removing the secular terms that grow in time

unbounded, i.e the coefficients of eiω0T0 , we obtain the cor-

responding solvability conditions as

−2iω0A′− γA(iω0)
α −θ(3A2A+6AΛ2 +Λ3eiσT1) = 0,

(87)

where A′ = D1A. Then, we use the polar form A = 1
2
aeiϕ ,

where the real valued functions a and ϕ are the amplitude

and phase lag of time response, respectively. By substituting

A in Eq.(87) and separation of real and imaginary part we

obtain

ω0aϕ ′−
1

2
γaωα

0 cos
απ

2
−

3

8
θa3 −3θaΛ2 −θΛ3 cosζ = 0,

(88)

ω0a′+
1

2
γaωα

0 sin
απ

2
+θΛ3 sinζ = 0, (89)

with ζ = σT1 −ϕ denoting the new phase angle. Then, we

utilize steady-state conditions a′ = 0, ζ ′ = 0 in Eq.(88) and

Eq.(89), which leads to the relationship between the response

amplitude and the detuning parameter in the following form

θΛ3

ω0a
cosζ = σ −

1

2
γωα−1

0 cos
απ

2
−

3

8

θa2

ω0
−3

θΛ2

ω0
, (90)

θΛ3

ω0a
sinζ =−

1

2
γωα−1

0 sin
απ

2
. (91)

After simple algebra transformations over Eq.(90) and Eq.(91)

following polynomial equation can be obtained

σ2 −2σK +M = 0, (92)

with K and M given as

K =
1

2
γωα−1

0 cos
απ

2
+

3

8

θa2

ω0
−3

θΛ2

ω0
, (93)

M = K2 +

(

1

2
γωα−1

0 sin
απ

2

)2

, (94)
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from where the relationship for amplitude-frequency curves

can be obtained as

σ1,2 = K ±
√

K2 −M. (95)

One can notice that all the parameters contribute to the ap-

pearance of the superharmonic resonance of order 1/3 i.e.

we have interaction of terms of fractional-order, nonlinear,

and external excitation.

Appendix 3

Newmark method

We use Grunwald-Letnikov representation of fractional deriva-

tive and apply the Newmark-Beta method for numerical in-

tegration. We use two different meshes, coarse mesh for time

integration and fine mesh for fractional derivative approx-

imation. Grunwald-Letnikov representation of a fractional

derivative of a function q(τ) at a point of time τ is

GLDα
0,τ q(τ) = lim

h→0
h−α

n

∑
k=0

GLkq(τ − kh), (96)

where

GLk = (−1)k

(

α

k

)

(97)

Grunwald-Letnikov coefficients can also be represented in

recursive form as

GLk=0 = 1, GLk =
k−α −1

k
GLk−1. (98)

Let us define

∆τ

h
= p = 5÷20. (99)

where ∆τ is time step for coarse mesh, and h is time step for

fine mesh.

Representation of fractional derivative given by Eq.(96) in

fine mesh is

q
(α)
i = h−α

[

GL0 GL1 · · · GLk jp

]









































qi

qi−1

...

qi−p

qi−p−1

...

qi−2p

qi−2p−1

...

qk jp









































, (100)

where:

p is the number of past terms of length h in a time inte-

gration step of length ∆τ ,

j are previous time steps of length ∆τ that can be ap-

proximated accurately by a backward Taylor expansion us-

ing the displacement, velocity, and acceleration at a certain

time step i,

k represents overall chunks of j time steps that must be

taken into consideration to accurately approximate the frac-

tional derivative at a given point.

Taylor backward expansion for the last jp time steps can

be represented as in Eq.(101),

qi−1 = qi −hq̇i +
h2

2
q̈i +O(h3),

qi−2 = qi −2hq̇i +
4h2

2
q̈i +O(h3),

qi−3 = qi −3hq̇i +
9h2

2
q̈i +O(h3),

...

qi− jp = qi − jphq̇i +
j2 p2h2

2
q̈i +O(h3),

(101)

where qi, q̇i and q̈i are displacement, velocity and accelera-

tion, respectfully, at time step i.

Lets neglect higher order terms. Eq.(101) can be written in

the matrix form as Eq.(102),

(102)



















qi

qi−1

qi−2

qi−3

...

qi−( jp−1)



















=























1 0 0

1 −h h2

2

1 −2h 4h2

2

1 −3h 9h2

2
...

...
...

1 −( jp − 1)h ( jp−1)2h2

2



























qi

q̇i

q̈i





= [H0]





qi

q̇i

q̈i



 .

By analogy, the displacements from the step i− jp to the i−
(2 jp−1) in matrix form in terms of displacements, velocity

and acceleration of the i− jp is given by the Eq.(103),



















qi− jp

qi− jp−1

qi− jp−2

qi− jp−3

...

qi−(2 jp−1)



















=























1 0 0

1 −h h2

2

1 −2h 4h2

2

1 −3h 9h2

2
...

...
...

1 −( jp − 1)h ( jp−1)2h2

2



























qi− j

q̇i− j

q̈i− j





= [H]





qi− j

q̇i− j

q̈i− j



 .

(103)
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Here could jerk also be included, but we didn’t do this. Since

we omitted jerk, [H] = [H0]. Substituting Eq.(101), Eq.(102)

and Eq.(103) in Eq.(100) we obtain following expressions:

q
(α)
i =h−α

[

GL0 GL1 · · · GL jp−1

]

[H0]





qi

q̇i

q̈i





+h−α
[

GL jp GL jp+1 · · · GL2 jp−1

]

[H]





qi− j

q̇i− j

q̈i− j



+ · · ·

+h−α
[

GL(k−1) jp · · · GLk jp−1

]

[H]





qi−(k−1) j

q̇i−(k−1) j

q̈i−(k−1) j



 ,

(104)

q
(α)
i =

[

D01 D02 D03

]





qi

q̇i

q̈i



+
[

D11 D12 D13

]





qi− j

q̇i− j

q̈i− j





+ · · ·+
[

D(k−1)1 D(k−1)2 D(k−1)3

]





qi−(k−1) j

q̇i−(k−1) j

q̈i−(k−1) j



 ,

(105)

∆q
(α)
i =

[

D01 D02 D03

]





∆qi

∆q̇i

∆q̈i



+
[

D11 D12 D13

]





∆qi− j

∆q̇i− j

∆q̈i− j





+ · · ·+
[

D(k−1)1 D(k−1)2 D(k−1)3

]





∆qi−(k−1) j

∆q̇i−(k−1) j

∆q̈i−(k−1) j



 .

(106)

Lets consider equation of motion Eq.(48) in two consecutive

time instants:

Ω2∆q̈i +ω2
0 ∆qi +θ(∆qi)

3

+ γΩα
(

GLDα
0,τ i

qi −GLDα
0,τ i−1

qi−1

)

= f0 +∆ fi,
(107)

where

∆ fi = f1 cosτ i. (108)

By substituting Eq.(106) in Eq.(107) we obtain

(109)

(

Ω2 + γΩα D03

)

∆q̈i + γΩα D02∆q̇i +
(

ω2
0 + γΩα D01

)

∆qi

+ θ(∆qi)
3 = f0 + ∆ fi − ∆ fcorrection,

where

∆ fcorrection = γΩα
[

D11 D12 D13

]





∆qi− j

∆q̇i− j

∆q̈i− j



+ · · ·+

γΩα
[

D(k−1)1 D(k−1)2 D(k−1)3

]





∆qi−(k−1) j

∆q̇i−(k−1) j

∆q̈i−(k−1) j



 .

(110)

Note that in case of ∆ fi = const, Eq.(109) can be solved

using Runge-Kutta method (function ode45 in Matlab). If

this is not the case, Eq.(109) can be solved using Newmark-

Beta method.

For validation of the IHB solution, the Newmark-Beta

method for nonlinear systems is used and implemented ac-

cording to the procedure presented in [6, 12].


