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We present a hybridization of the accelerated gradientmethodwith two vector directions.This hybridization is based on the usage of
a chosen three-term hybridmodel. Derived hybrid accelerateddouble directionmodel keeps preferable properties of both included
methods. Convergence analysis demonstrates at least linear convergence of the proposed iterative scheme on the set of uniformly
convex and strictly convex quadratic functions. The results of numerical experiments confirm better performance profile in favor
of derived hybrid accelerated double direction model when compared to its forerunners.

1. Introduction

The main goal herein is to derive an efficient optimization
method for minimization of an objective function 𝑓 : R𝑛 󳨀→
R. Therewith, we assume the function 𝑓 is uniformly convex
and twice continuously differentiable. Furthermore, for the
gradient and theHessian of the function𝑓 at the 𝑘-th iterative
point we use the next notation:

𝑔𝑘 (𝑥) = 󳶚𝑓 (𝑥𝑘) ,
𝐺𝑘 (𝑥) = 󳶚2𝑓 (𝑥𝑘) .

(1)

The general form of the iterations for finding the extreme
values of the objective function 𝑓 is given by the next
expression:

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘𝑑𝑘, (2)

where 𝑥𝑘 is the current, 𝑥𝑘+1 is the next iterative point, 𝑡𝑘
is iterative step length value, and 𝑑𝑘 is an iterative vector
direction which leads us to the solution of the problem.
Certainly, 𝑡𝑘 and 𝑑𝑘 are the most important issues of an
optimization model (2) and they generate the efficiency of
a relevant method. For that reason, the way of defining
these two crucial elements is of great importance for each
minimization scheme.

In one of the first algorithms for solving unconstrained
optimization problems, denoted as the steepest descent gra-
dient method which is exposed by Cauchy, the iteration is
defined as

𝑥𝑘+1 = 𝑥𝑘 − 𝑡𝑘𝑔𝑘, (3)

and here, the descent direction is simply presented as the
negative gradient vector, while iterative step size value is
calculated by the exact line search formula:

𝑡𝑘 = argmin
𝑡>0
𝑓 (𝑥𝑘 + 𝑡𝑑𝑘) . (4)

Furthermore, in the general Newton method

𝑥𝑘+1 = 𝑥𝑘 − 𝐺−1𝑘 𝑔𝑘𝑡𝑘, (5)

the vector direction is calculated as the product of the inverse
Hessian and the gradient of the objective function. Defining
the vector direction in this way guarantees fast convergence
properties, but still, practical computing of the function Hes-
sian and its inverse can be difficult. And so, many modified
Newton, Newton-conjugate, and quasi Newton schemes were
developed in which the calculation of the Hessian and its
inverse is, somehow, avoided.

In the quasi-Newton methods the Hessian of the goal
function or its inverse is approximated by the adequately
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2 Mathematical Problems in Engineering

defined matrix. Using this type of methods we generally
reduce the time of computations since we avoid the com-
plicated calculations in deriving the Hessian of the objective
function. Nevertheless, the methods of quasi Newton type
preserve good properties of the Newton method. For these
reasons, in this paper, we propose the method of quasi
Newton type where the value of the iterative step size
parameter 𝑡𝑘 is obtained by the inexact Backtracking line
search procedure.

In the second section we give an overview of some
accelerated gradient methods and hybrid iterations. We elab-
orate the deriving of the hybrid accelerated double direction
method and restate the algorithm in the third section of this
paper. In the fourth section we give a convergence analysis
regarding the proposed iteration.Numerical experiments and
comparison are presented in the last section of this paper.

2. Preliminaries: Accelerated Gradient
Methods and Hybrid Iterations

The authors in [1] rightfully detected a class of accelerated
gradient descent methods, defined by the general iterative
scheme

𝑥𝑘+1 = 𝑥𝑘 − 𝛾−1𝑘 𝑡𝑘𝑔𝑘. (6)

In the previous expression, 𝛾𝑘 presents an iterative accelera-
tion parameter which improves performance of the relevant
method. A common way to determine this parameter is
through the features of the second-order Taylor’s series taken
on appropriate scheme (6). Acceleration parameters that
were computed in such way are applied in the methods
described in [1–5]. According to the iteration form (6), we
can conclude that the accelerated gradient methods are of
the quasi-Newton type in which the approximation of the
Hessian, i.e., its inverse, is obtained by the scalar matrix 𝛾𝑘𝐼,
where 𝐼 is appropriate identity matrix and 𝛾𝑘 = 𝛾(𝑥𝑘, 𝑥𝑘−1)
is the matching acceleration parameter. Here are several
expressions for defining the acceleration parameters of some
accelerated gradient schemes:

𝛾𝑆𝑀
𝑘+1
= 2𝛾𝑘 𝛾𝑘 [𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘)] + 𝑡𝑘

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2
𝑡2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2
. (7)

(SMmethod [1])

𝛾𝐴𝐷𝐷
𝑘+1

= 2𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) − 𝛼𝑘𝑔
T
𝑘
(𝛼𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)

(𝛼𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)T (𝛼𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)
, (8)

(ADD method [4])

𝛾𝐴𝐷𝑆𝑆
𝑘+1

= 2𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) + (𝛼𝑘𝛾𝑘
−1 + 𝛽𝑘) 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2

(𝛼𝑘𝛾𝑘−1 + 𝛽𝑘)2 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2
, (9)

(ADSS method [2])

𝛾𝑇𝐴𝐷𝑆𝑆
𝑘+1

= 2𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) + 𝜓𝑘
󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2

𝜓2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2
, (10)

(TADSS method [5])

𝛾𝐻𝑆𝑀
𝑘+1

= 2𝛾𝑘 𝛾𝑘 [𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘)] + (𝛼𝑘 + 1) 𝑡𝑘
󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2

(𝛼𝑘 + 1)2 𝑡2𝑘 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2
, (11)

(HSMmethod [3]).
An interesting concept of merging iterations through the

hybrid expression was suggested in some research articles
(see [6–8]). Some of representations are given by the next set
of iterations:

𝑢1 = 𝑢 ∈ C,
𝑢𝑘+1 = 𝑇𝑢𝑘, 𝑘 ∈ N,

(12)

V1 = V ∈ C,
V𝑘+1 = (1 − 𝛼𝑘) V𝑘 + 𝛼𝑘𝑇V𝑘, 𝑘 ∈ N,

(13)

𝑧1 = 𝑧 ∈ C,
𝑧𝑘+1 = (1 − 𝛼𝑘) 𝑧𝑘 + 𝛼𝑘𝑇𝑦𝑘,
𝑦𝑘 = (1 − 𝛽𝑘) 𝑧𝑘 + 𝛽𝑘𝑇𝑧𝑘, 𝑘 ∈ N,

(14)

where 𝑇 : C 󳨀→ C is a mapping defined on nonempty
convex subset C of a normed space E, V𝑘, 𝑧𝑘, and 𝑦𝑘 present
the sequences defined by proposed iterations, and {𝛼𝑘 }, {𝛽𝑘} ∈(0, 1).

In [9] it was proved that the hybrid method

𝑥1 = 𝑥 ∈ R,
𝑥𝑘+1 = 𝑇𝑦𝑘,
𝑦𝑘 = (1 − 𝛼𝑘) 𝑥𝑘 + 𝛼𝑘𝑇𝑥𝑘, 𝑘 ∈ N,

(15)

proposed by Picard, Mann, and Ishikawa, upgrades the
hybrid models mentioned above. The authors of [3] used the
advantages of the hybrid model (15) and derived a hybrid
version of the accelerated gradient SM method from [1],
termed the HSMmethod and defined by

𝑥𝑘+1 = 𝑥𝑘 − (𝛼𝑘 + 1) 𝑡𝑘𝛾−1𝑘 𝑔𝑘. (16)

Numerical tests from [3] confirmed that the hybrid model
(16) upgrades its forerunner SM iterative rule.

3. HADD Algorithm

We are motivated by the confirmed advantages which were
approved in [3] when the scheme (15) was applied on the
SM method. As a result, the hybrid SM model (called HSM)
was defined and tested in [3]. Herein, we apply the same
hybridization strategy to the accelerated double direction
method (ADD method, shortly), introduced in [4]. Derived
scheme will be based on the hybrid scheme (15) and with that
it keeps the accelerated features of the ADD iterations.

In order to complete the presentation, we start from the
ADD iteration:

𝑥𝑘+1 = 𝑥𝑘 − 𝑡𝑘𝛾𝑘−1𝑔𝑘 + 𝑡2𝑘𝑑𝑘, (17)
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Require: Objective function 𝑓(𝑥), gradient 𝑔𝑘 and stepsize 𝑡𝑘.
1: Compute

𝑑𝑘(𝑡) =
{{{
{{{{

𝑑∗
𝑘

if 𝑘 ≤ 𝑚 − 1
𝑚

∑
𝑖=2

𝑡𝑖−1𝑑∗
𝑘−𝑖+1

if 𝑘 ≥ 𝑚,
where 𝑡 = 𝑡𝑘 is the step size, 𝑑∗𝑘 is the solution of the problem min𝑥∈𝑅Φ𝑘(𝑑), and
Φ𝑘(𝑑) = ∇𝑓 (𝑥𝑘)T 𝑑 + 12𝛾𝑘+1𝐼 = 𝑔

T
𝑘
𝑑 + 12𝛾𝑘+1𝐼.

2: Return 𝑑𝑘 = 𝑑∗𝑘 .

Algorithm 1: Procedure Second direction (calculation of the second direction vector 𝑑𝑘).

where 𝑡𝑘 is appropriately defined step size, the first direction
vector is given by −𝛾𝑘−1𝑔𝑘 = −(𝛾𝐴𝐷𝐷𝑘 )−1𝑔𝑘, and the second
one, 𝑑𝑘, is determined based on the next procedure Second
direction. That procedure was introduced in [4], which was
derived as a practical appearance of the more general proce-
dure considered in [10]. The procedure Second direction is
restated in Algorithm 1.

Remark 1. For further investigation within this topic, the
second direction 𝑑𝑘 in the ADD iteration can be defined
differently. For example, in [11] the authors proposed direc-
tional k-step Newton methods for solving a single nonlinear
equation in n-variables. Accordingly, they established the
semi-local convergence analysis for these models, based on
two different approaches. The first one is based on recurrent
relations, while the other, more preferable, is established
using recurrent functions. Using one (or both) approaches
from [11] in determining the second direction 𝑑𝑘 in the ADD
method as well as in its hybrid version can be an interesting
topic in further research.

Applying the hybrid scheme (15) on the iterative rule (17),
we get the hybrid iterative scheme

𝑥1 = 𝑥 ∈ R,
𝑥𝑘+1 = 𝑇𝑦𝑘 = 𝑦𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝑡2𝑘𝑑𝑘,
𝑦𝑘 = (1 − 𝛼𝑘) 𝑥𝑘 + 𝛼𝑘𝑇𝑥𝑘
= (1 − 𝛼𝑘) 𝑥𝑘 + 𝛼𝑘 (𝑥𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝑡2𝑘𝑑𝑘)
= 𝑥𝑘 − 𝛼𝑘𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝛼𝑘𝑡2𝑘𝑑𝑘, 𝑘 ∈ N.

(18)

After replacing the third expression from the set of equations
(18) into the second one, the next iterative rule follows:

𝑥𝑘+1 = 𝑥𝑘 − (𝛼𝑘 + 1) 𝑡𝑘𝛾−1𝑘 𝑔𝑘 + (𝛼𝑘 + 1) 𝑡2𝑘𝑑𝑘. (19)

To simplify further calculation, we will use a constant
value for the parameter 𝛼𝑘 ∈ (0, 1) in (19), just like the authors
did in [1, 9]. So, in (19), instead of 𝛼𝑘 + 1 ∈ (1, 2) we simply
take 𝛼 ∈ (1, 2). Now we can restate a hybrid ADDmethod, or
the HADD iterative scheme, as follows:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝛼𝑡2𝑘𝑑𝑘, 𝛼 ∈ (1, 2) . (20)

Yet, we need to determine the iterative value of the
accelerated parameter 𝛾𝑘 = 𝛾𝐻𝐴𝐷𝐷

𝑘
. As we mentioned

previously, this parameter can be appropriately defined using
Taylor’s expansion of the proposed iteration (20) in two
successive iterative points:

𝑓 (𝑥𝑘+1) ≈ 𝑓 (𝑥𝑘) + 𝑔T𝑘𝛼 (𝑡2𝑘𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘) + 12
⋅ 𝛼2 (𝑡2

𝑘
𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)T ∇2𝑓 (𝜉)

⋅ (𝑡2
𝑘
𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘) .

(21)

The parameter 𝜉 in the previous expansion fulfills the condi-
tion

𝜉 ∈ [𝑥𝑘, 𝑥𝑘+1] ,
𝜉 = 𝑥𝑘 + 𝜅 (𝑥𝑘+1 − 𝑥𝑘) = 𝑥𝑘 + 𝜅 (𝛼𝑡2𝑘𝑑𝑘 − 𝛼𝑡𝑘𝛾−1𝑘 𝑔𝑘) ,

0 ≤ 𝜅 ≤ 1.
(22)

In the next relation we substitute the value 󳶚2𝑓(𝜉) from (21)
by the scalar matrix 𝛾𝑘+1𝐼, which leads to

𝑓 (𝑥𝑘+1)
= 𝑓 (𝑥𝑘) + 𝑔T𝑘𝛼 (𝑡2𝑘𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)
+ 12𝛼
2𝛾𝑘+1 (𝑡2𝑘𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)T (𝑡2𝑘𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘) .

(23)

From (23), it is possible to derive the approximation factor
𝛾𝑘+1 = 𝛾𝐻𝐴𝐷𝐷𝑘+1 of the HADD scheme:

𝛾𝐻𝐴𝐷𝐷
𝑘+1

= 𝛾𝑘+1

= 2𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) − 𝛼𝑔
T
𝑘
(𝑡2
𝑘
𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)

𝛼2𝑡2
𝑘
(𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)T (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)

. (24)

With the aim of preserving the Second-Order Neces-
sary Condition and Second-Order Sufficient Condition, we
assume positivity of the acceleration parameter: 𝛾𝑘+1 > 0.
In practical computation, it is possible that (24) generates
negative value for 𝛾𝑘+1. We resolve this situation by taking
𝛾𝑘+1 = 1 in such cases. As a consequence, then the first
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Require: Objective function 𝑓(𝑥), the direction 𝑑𝑘 of the search at the point 𝑥𝑘, and numbers 0 < 𝜎 < 0.5 and 𝛽 ∈ (0, 1).
1: 𝑡 = 1.
2: While 𝑓(𝑥𝑘 + 𝑡𝑑𝑘) > 𝑓(𝑥𝑘) + 𝜎𝑡𝑔𝑇𝑘 𝑑𝑘, take 𝑡 fl 𝑡𝛽.
3: Return 𝑡𝑘 = 𝑡.

Algorithm 2:The Backtracking line search procedure.

Require: 0 < 𝜌 < 1, 0 < 𝜏 < 1, 𝑥0 ∈ R𝑛 and 𝛼 ∈ (1, 2).
1: Set 𝑘 = 0. For given 𝑥0, take 𝛾0 = 1 and calculate 𝑓(𝑥0) and 𝑔(𝑥0).
2: If ‖𝑔𝑘‖ < 𝜖, then return 𝑥𝑘, 𝑓(𝑥𝑘) and stop the algorithm, else continue by the next step.
3: Compute the iterative step length, 𝑡𝑘, by Algorithm 2.
4: Compute second vector direction, 𝑑𝑘, by the rule Second direction described in Algorithm 1.
5: Compute 𝑥𝑘+1 using (20), then calculate 𝑓(𝑥𝑘+1) and 𝑔𝑘+1.
6: Calculate the approximation parameter 𝛾𝑘+1 using (24).
7: If 𝛾𝑘+1 < 0 take 𝛾𝑘+1 = 1.
8: Set 𝑘 fl 𝑘 + 1 and go to Step 2.
9: Return 𝑥𝑘+1 and 𝑓(𝑥𝑘+1).

Algorithm 3: HADD method.

vector direction becomes the negative gradient vector −𝑔𝑘. In
this special case, the next iterative point of the iteration (20)
becomes

𝑥𝑘+2 = 𝑥𝑘+1 − 𝛼𝑡𝑘+1𝑔𝑘+1 + 𝛼𝑡2𝑘+1𝑑𝑘+1. (25)

In order to present the main HADD algorithm, we
need two additional auxiliary procedures. The first one is
previously displayed Algorithm 1, by which we calculate
the second vector direction, 𝑑𝑘. The second procedure is
the Backtracking line search algorithm for calculating the
iterative step size value.

Algorithm 3 describes the main algorithm, termed the
HADD algorithm.

4. Convergence of the HADD Method

The convergence properties of the established HADD itera-
tive method are considered on the set of uniformly convex
and strictly convex quadratic functions. In the case of
uniformly convex functions the statements are the same as
exposed in [1, 4]. For that reason, we just restate the following
lemma, in which decreasing of the objective function in two
successive points is estimated with respect to the HADD
scheme. Thereupon, the upcoming theorem confirms linear
convergence of our hybrid accelerated model.

Lemma 2. Suppose the function 𝑓 is twice continuously
differentiable and uniformly convex on R𝑛. With that, let the
sequence {𝑥𝑘} be generated by Algorithm 3. Then the next
estimation is true

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘+1) ≥ 𝜇 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2 , (26)

where

𝜇 = { 𝜎𝑀,
𝜎 (1 − 𝜎)
𝐿 𝛽} . (27)

Theorem 3. For the twice continuously differentiable and
uniformly convex function 𝑓 on R𝑛 and the sequence {𝑥𝑘}
generated by Algorithm 3, the following holds:

lim
𝑘󳨀→∞

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩 = 0. (28)

Therewith, the sequence {𝑥𝑘} converges to the optimal solution
at least linearly.

We show now that the iteration (20) is convergent
regarding the set of strictly convex quadratic functions

𝑓 (𝑥) = 12𝑥
T𝐴𝑥 − 𝑏T𝑥. (29)

In (29), it is assumed that 𝐴 is a real 𝑛 × 𝑛 symmetric positive
definite matrix and that vector 𝑏 ∈ R𝑛 is given. The smallest
and the largest eigenvalues of the matrix 𝐴, respectively, are
denoted by 𝜆1 and 𝜆𝑛.
Lemma 4. Let 𝑓 be the strictly convex quadratic function
defined by (29), where 𝐴 ∈ R𝑛×𝑛 is a symmetric positive
definite matrix. Let 𝜆1 and 𝜆𝑛 be the smallest and the largest
eigenvalues of 𝐴. Then, the following inequalities are valid for
the hybrid accelerated gradient model (20):

𝜆1 ≤ 𝛾𝑘+1𝑡𝑘+1 ≤
4𝜆𝑛
𝜎 , 𝑘 ∈ N, (30)

Proof. Let us calculate the difference in two successive itera-
tive points of the goal function (29):

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) = 12𝑥
T
𝑘+1
𝐴𝑥𝑘+1 − 𝑏T𝑥𝑘+1 − 12𝑥

T
𝑘
𝐴𝑥𝑘

+ 𝑏T𝑥𝑘.
(31)
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Including the iteration (20) we continue computations:

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) = 12 (𝑥𝑘 − 𝛼𝑡𝑘𝛾
−1

𝑘
𝑔𝑘 + 𝛼𝑡2𝑘𝑑𝑘)T

⋅ 𝐴 (𝑥𝑘 − 𝛼𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝛼𝑡2𝑘𝑑𝑘)
− 𝑏T (𝑥𝑘 − 𝛼𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝛼𝑡2𝑘𝑑𝑘) − 12𝑥

T
𝑘
𝐴𝑥𝑘 + 𝑏T𝑥𝑘

= 12𝑥
T
𝑘
𝐴𝑥𝑘 − 12𝛼𝑡𝑘𝛾

−1

𝑘
𝑔T
𝑘
𝐴𝑥𝑘 + 12𝛼𝑡

2

𝑘
𝑑T
𝑘
𝐴𝑥𝑘 − 12

⋅ 𝛼𝑡𝑘𝛾−1𝑘 𝑔T𝑘𝐴𝑥𝑘 + 12𝛼
2𝑡2
𝑘
𝛾−2
𝑘
𝑔T
𝑘
𝐴𝑔𝑘 − 12

⋅ 𝛼𝑡3
𝑘
𝛾−1
𝑘
𝑑T
𝑘
𝐴𝑔𝑘 + 12𝛼𝑡

2

𝑘
𝑑T
𝑘
𝐴𝑥𝑘 − 12𝛼

2𝑡3
𝑘
𝛾−1
𝑘
𝑑T
𝑘
𝐴𝑔𝑘

+ 12𝛼
2𝑡4
𝑘
𝑑T
𝑘
𝐴𝑑𝑘 − 𝑏T𝑥𝑘 + 𝛼𝑡𝑘𝛾−1𝑘 𝑏T𝑔𝑘 − 𝛼𝑡2𝑘𝑏T𝑑𝑘

− 12𝑥
T
𝑘
𝐴𝑥𝑘 + 𝑏T𝑥𝑘.

(32)

Applying the equality 𝑔𝑘 = 𝐴𝑥𝑘 − 𝑏 and the symmetry
property of 𝐴, we get

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) = −𝛼𝑡𝑘𝛾−1𝑘 𝑔T𝑘𝐴𝑥𝑘 + 𝛼𝑡2𝑘𝑑T𝑘𝐴𝑥𝑘
− 𝛼2𝑡3
𝑘
𝛾−1
𝑘
𝑑T
𝑘
𝐴𝑔𝑘

+ 12𝛼
2𝑡2
𝑘
𝛾−2
𝑘
𝑔T
𝑘
𝐴𝑔𝑘

+ 12𝛼
2𝑡4
𝑘
𝑑T
𝑘
𝐴𝑑𝑘 + 𝛼𝑡𝑘𝛾−1𝑘 𝑏T𝑔𝑘

− 𝛼𝑡2
𝑘
𝑏T𝑑𝑘.

(33)

The right hand side of the previous expression can be
further transformed as follows:

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) = 𝛼𝑡𝑘𝛾−1𝑘 (𝑏T𝑔𝑘 − 𝑥T𝑘𝐴𝑔𝑘)
+ 𝛼𝑡2
𝑘
(𝑥T
𝑘
𝐴𝑑𝑘 − 𝑏T𝑑𝑘) − 𝛼2𝑡3𝑘𝛾−1𝑘 𝑑T𝑘𝐴𝑔𝑘 + 12

⋅ 𝛼𝑡2
𝑘
𝛾−2
𝑘
𝑔T
𝑘
𝐴𝑔𝑘 + 12𝛼

2𝑡4
𝑘
𝑑T
𝑘
𝐴𝑑𝑘

= 𝛼𝑡𝑘𝑔T𝑘 (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘) − 12
⋅ 𝛼2𝑡2
𝑘
𝛾−1
𝑘
𝑔T
𝑘
𝐴(𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘) + 12

⋅ 𝛼2𝑡3
𝑘
𝑑T
𝑘
𝐴(𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)

= (𝛼𝑡𝑘𝑔T𝑘 − 12𝛼
2𝑡2
𝑘
𝛾−1
𝑘
𝑔T
𝑘
𝐴 + 12𝛼

2𝑡3
𝑘
𝑑𝑇
𝑘
𝐴)

⋅ (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘) .

(34)

The replacement of 𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) by the right hand side of
(34) into (24) leads us to

𝛾𝑘+1 = 2(𝛼𝑡𝑘𝑔
T
𝑘
− (1/2) 𝛼2𝑡2

𝑘
𝛾−1
𝑘
𝑔T
𝑘
𝐴 + (1/2) 𝛼2𝑡3

𝑘
𝑑𝑇
𝑘
𝐴) (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘) − 𝛼𝑡𝑘𝑔𝑇k (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)

𝛼2 (𝑡2
𝑘
𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)T (𝑡2𝑘𝑑𝑘 − 𝑡𝑘𝛾−1𝑘 𝑔𝑘)

. (35)

After some calculations, we obtain

𝛾𝑘+1 = (𝑡𝑘𝑑𝑘 − 𝛾
−1

𝑘
𝑔𝑘)T 𝐴(𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)

(𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)T (𝑡𝑘𝑑𝑘 − 𝛾−1𝑘 𝑔𝑘)
. (36)

Previous expression confirms that 𝛾𝑘+1 is the Rayleigh quo-
tient of the real symmetric matrix𝐴 at the vector 𝑡𝑘𝑑𝑘−𝛾−1𝑘 𝑔𝑘,
which leads us to the conclusion

𝜆1 ≤ 𝛾𝑘+1 ≤ 𝜆𝑛, 𝑘 ∈ N. (37)

The left hand side in inequalities (30) arrives from the fact
0 ≤ 𝑡𝑘+1 ≤ 1. To prove the right hand side of (30), we use the
estimation [[3], eq. (3.8)]:

𝑡𝑘 > 𝛽 (1 − 𝜎) 𝛾𝑘𝛼𝐿 . (38)

Previous inequality implies

𝛾𝑘+1
𝑡𝑘+1 <

𝐿𝛼
𝛽 (1 − 𝜎) . (39)

We can approximate the Lipschitz constant 𝐿 by the largest
eigenvalue 𝜆𝑛 and use the fact that 𝛼 ≤ 2, 0 < 𝜎 < 0.5 and
𝛽 ∈ (𝜎, 1). Then (39) is restated to

𝛾𝑘+1
𝑡𝑘+1 <

𝐿𝛼
𝛽 (1 − 𝜎) <

2𝜆𝑛
𝜎 ⋅ 0.5 =

4𝜆𝑛
𝜎 . (40)

Estimation of the Lipschitz constant 𝐿 by the largest eigen-
value 𝜆𝑛 is certainly valid since the matrix 𝐴 is symmetric
and 𝑔(𝑥) = 𝐴𝑥 − 𝑏. From these two facts we conclude that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝐴 (𝑥 − 𝑦)󵄩󵄩󵄩󵄩
≤ ‖𝐴‖ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 = 𝜆𝑛 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,

(41)

which completes the proof.

Theorem5. Let the iterations (19) be applied on strictly convex
quadratic function 𝑓 given by the expression (29). Suppose that
the condition

𝜆𝑛 < 2𝜆1𝛼 (42)
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holds for the largest and the smallest eigenvalues of symmetric
positive definite matrix 𝐴. Then, the following estimations are
true:

(𝑝𝑘+1
𝑖
)2 ≤ 𝛿2 (𝑝𝑘

𝑖
)2 ,

(𝑞𝑘+1
𝑖
)2 ≤ 𝜆2

𝑛
(𝑞𝑘
𝑖
)2 ,

(43)

where

𝛿 = max{1 − 𝜎𝜆12𝜆𝑛 ,
𝜆𝑛
𝜆1 − 1} (44)

and 𝑝𝑘
𝑖
, 𝑞𝑘
𝑖
∈ R, 𝑘, 𝑖, 𝑛 ∈ N.Therewith

lim
𝑘󳨀→∞

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩 = 0. (45)

Proof. Let us consider the orthonormal system of eigenvec-
tors {V1, V2, . . . , V𝑛} of the matrix𝐴.Thereon, we construct the
sequence of values {𝑥𝑘} by applying Algorithm 3 on strictly
convex quadratic function 𝑓 defined by (29). Then, for some
𝑘 ∈ N and for some constants 𝑝𝑘

1
, 𝑝𝑘
2
, . . . , 𝑝𝑘

𝑛
, 𝑞𝑘
1
, 𝑞𝑘
2
, . . . , 𝑞𝑘

𝑛
∈

R it follows that

𝑔𝑘 = 𝐴𝑥𝑘 − 𝑏 =
𝑛

∑
𝑖=1

𝑝𝑘
𝑖
V𝑖,

𝑑𝑘 =
𝑛

∑
𝑖=1

𝑞𝑘
𝑖
V𝑖.

(46)

Applying (20), further we conclude that

𝑔𝑘+1 = 𝐴 (𝑥𝑘 − 𝛼𝑡𝑘𝛾−1𝑘 𝑔𝑘 + 𝛼𝑡2𝑘𝑑𝑘) − 𝑏
= (𝐼 − 𝛼𝑡𝑘𝛾−1𝑘 𝐴)𝑔𝑘 + 𝛼𝑡2𝑘𝐴𝑑𝑘.

(47)

Having in mind the representation (46), one can verify

𝑔𝑘+1 =
𝑛

∑
𝑖=1

𝑝𝑘+1
𝑖

V𝑖

=
𝑛

∑
𝑖=1

((1 − 𝛼𝑡𝑘𝛾−1𝑘 𝜆𝑖) 𝑝𝑘𝑖 + 𝛼𝑡2𝑘𝜆𝑖𝑞𝑘𝑖 ) V𝑖

=
𝑛

∑
𝑖=1

(1 − 𝛼𝑡𝑘𝛾−1𝑘 𝜆𝑖) 𝑝𝑘𝑖 V𝑖 + 𝛼𝑡2𝑘
𝑛

∑
𝑖=1

𝜆𝑖𝑞𝑘𝑖 V𝑖.

(48)

To prove

(𝑝𝑘+1
𝑖
)2 ≤ 𝛿2 (𝑝𝑘

𝑖
)2 , (𝑞𝑘+1

𝑖
)2 ≤ 𝜆2

𝑛
(𝑞𝑘
𝑖
)2 , (49)

i.e., the inequalities (43), we only need to verify that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 − 𝛼

𝜆𝑖
𝛾𝑘𝑡−1𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿 (50)

since |𝜆𝑖| ≤ 𝜆𝑛 for all 𝑖 ∈ {1, 2, . . . , 𝑛}. There are two
possibilities:

(1) 𝛼𝜆𝑖 ≤ 𝑡−1𝑘 𝛾𝑘.

This case implies the next set of inequalities:

1 > 𝛼 𝜆𝑖
𝛾𝑘𝑡−1𝑘 =

𝛼𝜆𝑖
𝛾𝑘 ⋅ 𝑡𝑘 ≥

𝛼𝜆1
𝛾𝑘
𝛽 (1 − 𝜎) 𝛾𝑘

𝐿𝛼
= 𝜆1𝛽 (1 − 𝜎)𝐿 > 𝜆1𝜎 ⋅ 0.5𝜆𝑛 = 𝜆1

2𝜆𝑛𝜎.
(51)

As a consequence, we can conclude that

1 − 𝛼 𝜆𝑖
𝛾𝑘𝑡−1𝑘 ≤ 1 −

𝜆1
2𝜆𝑛 𝜎 ≤ 𝛿. (52)

(2) 𝛼𝜆𝑖 ≥ 𝑡−1𝑘 𝛾𝑘.
In this case, one can verify the following estimations:

1 < 𝛼𝜆𝑖
𝛾𝑘𝑡−1𝑘 ≤

𝛼𝜆𝑛
𝜆1 󳨐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 − 𝛼
𝜆𝑖
𝛾𝑘𝑡−1𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝛼𝜆𝑛
𝜆1 ≤ 𝛿. (53)

The representation (46) and the fact that {V1, V2, . . . , V𝑛} is
an orthonormal system of eigenvectors lead to the next
conclusion

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2 =
𝑛

∑
𝑖=1

(𝑑𝑘
𝑖
)2 . (54)

Now, knowing that the parameter 𝛿 under condition 𝜆𝑛 <2𝜆1/𝛼 satisfies 0 < 𝛿 < 1, we confirm that the final statement
is true.

lim
𝑘󳨀→∞

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩 = 0 (55)

Remark 6. Theassumption (42) used in the previous theorem
is required in order to prove that the HADD process is
convergent for the strictly convex quadratics. Therewith,
knowing that the hybrid parameter 𝛼 ∈ (1, 2) implies 𝜆𝑛/𝜆1 ∈(1, 2) points to the conclusion that Theorem 5 is applicable
to very few cases. However, this is not entirely so since
we choose only one particular value 𝛼 ∈ (1, 2) for the
practical computations. Regarding this matter, the authors
in [3] numerically confirmed that the optimal value of the
hybrid parameter 𝛼 is the one close to the left limit of the
interval (1, 2), i.e., the valuewhich is very close to 1.Therefore,
we choose 𝛼 = 1.1 for numerical tests displayed in the next
section. Choosing the similar values for hybrid parameter
𝛼, the condition (42) becomes very close to the condition
𝜆𝑛 < 2𝜆1, used in [12], under which Q-linear convergence
rate of the preconditioned BB method was established.

5. Computational Tests and Comparisons

The performance of the C++ implementation of derived
HADD model is investigated on a set of 630 test uncon-
strained optimization problems picked from [13].We conduct
the testings on a Workstation Intel Celeron 1.6 GHz. The
following stopping criteria are used:

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩 ≤ 10−6,
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘)󵄨󵄨󵄨󵄨
1 + 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘)󵄨󵄨󵄨󵄨 ≤ 10−16. (56)
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Table 1: Comparison between theHADD,ADD, andHSMmethods
regarding the minimal number of function evaluations.

Comparative methods HADD ADD HSM =
Number of function evaluations 142 0 18 50

The values of the Backtracking parameters are set up as
follows: 𝜎 = 0.0001 and 𝛽 = 0.8.

We compare the hybrid accelerated HADD method with
its forerunner ADD scheme, as well as with the hybrid accel-
erated HSM method. The number of function evaluations is
the performance profile measured in all tests.The dominance
of the ADD method regarding the number of iterations
among the other comparative models was confirmed in [4].
However, from that research we do not have any information
about the behavior of the ADD method when the number of
function evaluations is involved. With respect to this param-
eter, the HSM scheme upgrades the accelerated SM method
as well as Nesterov’s line search algorithm; see [3]. For these
reasons, our experimental goal is to numerically prove better
performance feature of the HADD method, considering the
number of function evaluations, when compared with the
ADD and the HSMmethod.

In Table 1, we display the number of problems, out of
630, for which an algorithm achieved the minimum number
of function evaluations. In the same table, we also display
the total number of problems for which all three algorithms
achieved an equal number of function evaluations. Based on
the results displayed in this table, it is obvious that the HADD
scheme convincingly outperforms the other two comparative
models.

For more clear visualization of the performance of the
HADD algorithm versus the ADD and the HSM algorithms,
we display in Figure 1 the Dolan-Moré’s performance profile
subject to the number of function evaluations metric. As we
can see, the HADD scheme is more robust and therewith
more efficient than the other two methods.

Obtained numerical results confirm that applied hybrid-
ization process is a good way to improve some important
characteristics of chosen accelerated methods. Preferable
outcomes of the HADD scheme, regarding analyzed char-
acteristic, come from the properly chosen hybrid value 𝛼,
together with derived accelerated parameter 𝛾𝐻𝐴𝐷𝐷. Good
convergent properties of defined HADD process can be a
reason for applying proposed hybridization on some other
gradient and accelerated gradient models.

6. Conclusion

We present a hybrid accelerated double direction gradient
method for solving unconstrained optimization problems.
The HADD method is derived by applying good properties
of the hybrid representation introduced in [3] in conjunction
with the form of double direction optimization model with
accelerated parameter presented in [4]. The convergence
of defined optimization model is provided on the set of
uniformly convex and strictly convex quadratic functions.

0

0.0

0.2

0.4

0.6

0.8

1.0

2 4

HADD
ADD
HSM

6 8 10 12 14


(



)

Figure 1: Performance profile for the HADD, ADD, and HSM
methods regarding the number of function evaluations metric.

The HADD scheme reserves preferable features of both
forerunner methods. Therewith, according to conducted
numerical experiments, it outperforms the ADD and HSM
methods regarding the requested number of function evalu-
ations. We evaluated the Dolan-Moré performance profiles of
comparative methods and showed that the HADD iteration is
the most efficient compared to the other two algorithms.
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