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In this paper, we are going to demonstrate a method for determining the generating functions of tetrahedral, hexahedral,
octahedral, dodecahedral, and icosahedral figurative numbers. The method is based on the differences between the members of the
series of the mentioned figurative numbers, as well as on the previously specified generating functions for the sequence Y .., (1 +

1)x" and geometric sequence ), ox".

1. Introduction

The generating functions for polygonal figurative numbers
(see [1-8]) as well as the generating functions for polyhedral
figurative numbers (see [1, 9, 10]) have been the subject of
research in the past period. Among polyhedral numbers, the
authors of this paper find particularly interesting tetrahedral,
hexahedral, octahedral, dodecahedral, and icosahedral fig-
urative numbers. Their geometric representation is dis-
played by regular polyhedron: tetrahedron, hexahedron,
octahedron, dodecahedron, and icosahedron (Figure 1).

Back in the 3rd century BC, Euclid proved that there
exist only 5 regular polyhedrons (see [11, 12]). This is the
reason why the polyhedron numbers are so special and that
is why they deserve a special place in the set of figurative
numbers.

The fact that octahedral and icosahedral numbers and
their models exist in many scientific areas also contributes to
this research. Icosahedral-hexagonal grid is the basis of the
global numerical weather prediction model (GME). This
grid was first introduced in meteorological modeling in 1968
and it has been gaining interest among researchers in recent
years (see [13]). Icosahedral structures are also present in
metals, such as gold (see [14]), copper (see [15]), and metal
glasses (see [16]). Octahedral forms are present in virus

structures (see [17, 18]), as well as in the atomic nucleus (see
(19, 20]).

The procedure for determining the generating function
of tetrahedral, hexahedral, octahedral, dodecahedral, and
icosahedral numbers is based on the differences between the
members of the series of objective numbers. The differences
between the two adjacent figurative numbers, as well as the
differences between these differences, provide great op-
portunities for determining many equivalents in the field of
figurative numbers. Applying these principles, we are able to
determine the generating functions of mentioned numbers
which is the main result of this paper.

2. Materials and Methods

It is known that (see [1, 21])

Tetrahedral numbers: 1, 4, 10, 20, 35, 56, ....
Hexahedral numbers: 1, 8, 27, 64, 125, 216, ....
Octahedral numbers: 1, 6, 19, 44, 85, 146, .. ..
Dodecahedral numbers: 1, 20, 84, 220, 455, 816, .. ..
Icosahedral numbers: 1, 12, 48, 124, 255, 456, .. ..

We denote by A; the difference between two adjacent
members in a series of figurative numbers, by A, the
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Figure 1: Tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron.

difference between two adjacent differences A;, and by A;
the difference between adjacent differences A,.
Tetrahedral numbers: 1, 4, 10, 20, 35, 56, ...
Ay 3, 6,10, 15, 21, ...
Az: 3, 4, 5, 6,
Ay 1, 1,1, ...
Hexahedral numbers: 1, 8, 27, 64, 125, 216, ...
Ay 7,19,37,61,91, ...
Ay 12, 18, 24, 30, . ..
A3Z 6, 6,6,
Octahedral numbers: 1, 6, 19, 44, 85, 146, ...
Ay 5,13, 25,41, 61, ...
Ay: 8,12, 16, 20, ...
Ay 4,4, 4, ...
Dodecahedral numbers: 1, 20, 84, 220, 455, 816, ...
Ay 19, 64, 136, 235, 361, ...
A,: 45, 72, 99, 126, . ..
As: 27,27, 27, ...
Icosahedral numbers: 1, 12, 48, 124, 255, 456, . ..
Ay 11, 36, 76, 131, 201, ...
Ay: 25, 40, 55, 70, ...
As: 15, 15, 15, ...

Figure 2 shows the formation of a series of tetrahedral
numbers using the differences A;. The second tetrahedral
number 4 is created by adding the first difference A; =3 to
the first tetrahedral number 1. Adding the following dif-
ference A; =6, a third tetrahedral number was formed
10=1+ 3 + 6. Adding the following difference A; = 10, we get
the fourth tetrahedral number 20=1+3 + 6 + 10, etc. Hex-
ahedral, octahedral, dodecahedral, and icosahedral numbers
are formed analogously.

The generating functions for polygonal figurative
numbers (see [1]) are also known:

x
triangular numbers: T~ =x+3x" +6x° +10x"
-x
+..-, for|x|<1,
1
x(1+x
square numbers: ( ) _ x +4x” +9x° + 16x*

(1-x)° (2)

+..-, forl|x|<1,

x(1+2x
pentagonal numbers: H = x +5x + 12x° +22x"
- X
+--+, for|x|<1,
(3)
x(1+3x
hexagonal numbers: H = x+6x° + 15x° + 28x"
- X
+..., for|x|<1.
(4)

The starting point for most generating functions (see [1])
is the geometric sequence:

Zx":1+x+x2+x3+x4+---+x”+---, |x| <1,

n=0
(5)

which converges for |x|<1. The generating function of
geometric series is (1/1 — x), i.e.,

1
l—z1+x+x2+x3+x4+~-+x"+m, x| <1,
-
(6)
and it represents the sequence of ones, i.e., 1,1,1,...,1,...
The direct multiplication gives
1
72=(1+x+x2+x3+x4+-~+x”+---)
(1-x)
-(1+x+x2+x3+x4+--~+x”+---)
=1+ +Dx+0+1+Dx" +(1+1+41+1)x +---
= 14+2x+3x7 44X + -+ (n+ DX+,
(7)

and that is the generator function for sequence of natural
numbers: 1,2,3,...,n,....

3. Results and Discussion

Denote by S1, S2, S3, S4, and S5 the sets of tetrahedral,
hexahedral, octahedral, dodecahedral, and icosahedral fig-
urative numbers, respectively.

Theorem 1. The generating function for tetrahedral figu-
rative numbers is
X

fSpx)=——3

- x)4’ for |x| < 1. (8)
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FicUrE 2: Formation of a series of tetrahedral numbers.

Proof. This theorem actually states that

=x+4x> +10x° +20x* +..., for|x|<1. 9)

x
a-x»'
To prove (9), we use the following notation:
A(x) = x +4x> + 10x° +20x* + .- .. (10)
We can rewrite previous expression as
A(x) =x- (1+4x+10x° +20x° +---). (11
By applying differences A; for tetrahedral numbers, the
following holds:
A(x) =x«(l+x+3x+4x2+6x2+10x3+10x3+~~)
((1 +3x 4+ 6x° + 10x° +--~)+(x+4x2+ 10x° +))

:x.
:(x+3x2+6x3+10x4+---)+x-A(x).

In the result obtained, separating by two decimal places,
we obtain tetrahedral numbers: 1, 4, 10, ...
That is,

A(0.01) = 0.01 +4-0.01> +10-0.01° + 20 - 0.01* + - -+

S +1)(n+2
=Yoo, Mt D@2
n=1 6

(16)

Note that for value x = 0.01, tetrahedral numbers greater
than 100 cannot be easily observed. In order to obtain better
transparency, a value x =0.001, or less, should be taken. This
also holds in the following examples. O

Theorem 2. The generating function for hexahedral figu-
rative numbers is

(12) 2
+4x+1
, , f(sz,x)=x(’“7x4), for [x|]<l.  (17)
Applying representation (1), we get (1-x)
x
A(x) =——F=+x-A(x).
(x) TS (x) (13)
3 Proof. This theorem states that
Further on A(x) —x-A(x) = (x/(1 -x)°), 5
X x(x?+4x+1) ) 3 4 "
—Ax)- (1-x) = T W—x+8x +27x° +64x" +---, for|x|<1.
- X
(14) (18)
x
=A(x) = 1-x" We prove this identity similarly as in the previous case.
Let A(x) = x +8x% +27x> + 64x* + -+
which was to be proved. Then, A(x) = x - (1 +8x + 27x% + 64x> +--+).
Taking the value x=0.01, we get By applying the differences A; for hexahedral numbers,
the following holds:
A(0.01) = —————=10.(01)(04) (10) (20) (35). ...
(0.01) (1= 0.01)° (01)(04) (10) (20) (35)
(15)
A(x) = (14 +7x +8x” +19x +27x” + 37" +-++)
= ((x+8x7 4272 + ) +(1+7x +19x% +37x° +--))
=x- (A +1+7x+ (7 +12)x" + (7 +12+18)x° +--+) (19)
=x-(Ax)+1+7 - (x+x"+x" +--- )+ 12 (x"+x +--- )+ 18- (x +x +---)+---
(A + 147 (x 42’427 4o ) +12- (P 4274 ) £18- (x4 x4
=x-(A(x)+1+7x-(1+x+x2+~-)+6-2x2~(1+x+x2+---)+6-3x3(1+x+x2+---)+---).
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x(x* +4x +1)

1 1 A(x) = T (22)
A(x)=x~<A(x)+1+7x-1 +6-2x2-1—+6-3x3 (1-x)
-x -x
Taking the value x=0.01, we get
1 ) 0.01 - 1.0401
’ e A(0.01) = —————=10.(01)(08) (27) (64) .. .. 23
1—x (0.01) (1= 0.01) (01)(08)(27) (64) (23)
=x-A(x)+x- (1 + X + x| (2x +3x2 + 4x° In the result obtained, separating by two decimal places,
l-x 1-x we obtain hexahedral numbers: 1, 8, 27, 64, ... O
+ >> Theorem 3. The generating function for octahedral figura-
(20) tive numbers is
x(x +1)?
Taking equality (7) leads to f(Ssx) = R for x| < 1. (24)
7 6 1
Ax)-x-Alx)=x-(1+ * + x . s-1 )
I-x 1-x \(1-x)
Proof. We need to prove that
l1-x+7x 6x 2x-x° 1)?
Alx)- (1-x)=x- + X 5 | M:x+6x2+19x3+44x4+85x5+-~-, for |x| < 1.
1-x l-x (1-x) 1-x)*
(21) (25)
By arranging this expression, we easily get the hexahe- For A(x) = x + 6x% + 19x° + 44x* + 85x° + - -, the next
dral figurative number generating function representation:  is valid:
A(x) = x - (1+6x +19x° + 44x” + 85x" + )
= (14 (x+ 5x) +(6x7 + 13x7) +(19x° + 25x7 ) +(44x" + 41x*) + )
:x-(l +6x° +19x +4d4x* + -+ 1+ 5x+ 13x2+25x3+41x4+~-)
:x-(A(x)+1+5x+5x2+8x2+5x3+8x3+ 12x° + 5x* + 8x* + 12x4+16x4+--~)
:x-(A(x)+1+5x+5x2+5x3+5x4+---+8x2+8x3+8x4+~--+ 12x° + 12x4+---)
:x-(A(x)+l+5'(x+x+x2+x3+---)+8x'(x+x2+x3+---)+ 12x2-(x+x2+x3---)+---) (26)

X

X - A(x)+1+

(
x- A(x)+1+— 5+8x+12x% + -+
il )

(

5x
+
-x 1-x

5x2 4x?

x-A(x)+x+1 +

1-x

-(2x+3x2+4x3---

1 1 2 1
x-[Ax)+1+5- (——1>+8x-(——1>+12 -(——1>+--~>
1-x 1-x 1-x

-(4-2x+4-3x2+4~4x3~--))
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From the equality (7), we obtain

5x7  4x? 1
A(x)—x'A(x):x+1_x+1—x'((l—x)2—1).

(27)
By arranging this expression, we get that
X +2x% + x°
AX) - (1-x) = ————
(1-x)
(28)
1 2
A () = LA
(I-x)
which was to be proved.
Taking the value x=0.01, we get
0.01 -1.0201
A(0.01) = — 5 =0.(01)(06)(19)(44) .... (29
(0.01) (1= 0.01)° (01)(06) (19) (44) (29)

Separating by two decimal places, we obtain octahedral
numbers: 1,6,9,44, .. .. |

Theorem 4. The generating function for dodecahedral fig-
urative numbers is

~ x(10x* +16x + 1)
f(Spx) = (1-x)°

,  for|x|<1. (30)

Proof. We will prove this theorem by confirming that
x(10x* + 16x + 1)
(1-x*

= x +20x° + 84x°> + 220x* + 455x°

+--+, forl|x|<1.

(31)

We denote by A(x) = x +20x% + 84x% +
220x* + 455x% + - -+

Then,

A(x) = x - (1+20x + 84x” + 220x” + 455x" + )

g
-

- X

1
x-<A(x)+1+19x-1
:x.(

2 2
=x-Ax)+x+ X <19 + X
1-x 1-x
19x2  9x?
=x-A(x)+x+
1-x 1-x

19x%  9x?
A(x)—x-A(x):x+1 d + X

-x 1-x

From the equality (6) and (7), we obtain

19x2  9x? 1 1
A (L-x)=xt s 5x. 4 327 3 )
l-x 1-x 1-x (1-x)

(33)

and after arranging this expression, we get that

1
+45x° .
1

x - (1+x+19x + 20x% + 64x% + 84x> + 136x° + 220x* + 235x* +)
x-(x +20x% + 84x° +220x* + -+ + 1 + 19x + 64x> + 136x° + 235x* + )
x~(A(x) +1+19x- (19 +45)x% + (19 + 45 + 72)x° +(19+45+72+99)x4+-~-)

x'(A(x)+1+19x-(1+x+x2+-~)+45x2‘(1+x+x2+~-)+72x3-(1+x+x2+---)+~-)

1
+72x3-—+---)
1-x

A(x)+1+L-(19+45x+72x2+99x3+~--))

1-x

-9-(5x+8x2+11x3+---)
-(5x+5x2+3x2+5x3+2-3x3+---)

-(5x-(1+x+x2+x3+---)+3x2~(1+2x+3x2+4x3+--~)).

(32)
10x% +16x% + x
A(x) (1—x)=w
(34)
L A(x) = x(10x% + 16x + 1)

(1-x)*

which was to be proved.
Taking the value x=0.001, we get
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0.001 - 1.01601 Proof. Let us show that the following identity is true:
A(0.0001) = ———————=0.(001) (020) (084) (220) .. ..
(1- 0.001) x(6x? +8x + 1) 2 3 4 5
— g =x+ 12x™ +48x™ + 124x™ +225x™ + -+ -,
(35) (1-x)
Separating by 3 decimal places, we obtain dodecahedral for |x| < 1
numbers: 1, 20, 84, .. .. O '
(37)
Theorem 5. The generating function for icosahedral figu- Then,
rative numbers is
6x% +8x + 1
F(Sox) 2 KO8 D) et (36)

(1- x)*

Ax) = x + 1257 + 48x° + 124x* +255x° + - --

=x-(1+12x +48x% + 124x° + 225x* +)

x-(1+x+ 11x + 12x% + 36x° + 48x° + 76x° + 124x* + 131x* +)

- (A(x) + 14+ 11x + (11 +25)x” + (11 + 25 + 40)x° + (11 + 25 + 40 + 55)x" + -+

(
(

- (x4 1267 +48x° + 1240 + -+ 1+ 11x +36x° +76x° + 131" + )
g
4

x A(x)+1+11x-(1+x+x2+---)+25x2-(1+x+x2+---)+40x3-(1+x+x2+---)+---)

1 1 1
x-(A(x)+1+11x-—+25x2-—+40x3-—+~~->
1-x 1-x 1-x

1
x-A(x)+x+1

+(11x% +25x7 + 40x" +55x° + - -+)

1
x-A(x) +x+1—~ (llx2 +25x° + 25x* + 15x* +25x° + 2.15x° + )
- X

1
x-A(x)+x+1—-(11x2+25x3+25x4+25x4+25x5+---+15x4+2><15x5+~--)
- X

~(11x2+25x3-(1+x+x2+~-~)+15x4-(1+2x+3x2+~~))

1
=x-A(x)+x+1

A(x)—x-A(x)=x+

x[ 11x" +25x" - —+ 15x " - 5
1-x 1-x (1-x)

Auyu—m=f@g%%;ﬂ
6x% +8x + 1
— ) - )

(38)

0.001 - 1.008006

A(0.001) = (1- 0.000)

which was to be proved. = 0.(001)(012)(048)(124). ...

Taking the value x = 0.001, we get (39)
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Separating by 3 decimal places, we obtain icosahedral
numbers: 1, 12, 48, .. ..

The obtained results can be reached in a different way.
The authors of this paper chose the presented method be-
cause of its simplicity and obviousness. O

4. Main Text

Polyhedron figurative numbers with their models exist in
many scientific fields. In this paper, we presented a pro-
cedure for determining the generating function of tetra-

hedral, hexahedral, octahedral, dodecahedral, and
icosahedral figurative numbers.

5. Conclusion

In this paper, we determined tetrahedral, hexahedral, oc-
tahedral, dodecahedral, and icosahedral generating func-
tions’ representation:

X
f(Sl,x) Zm, for|x|<1,
2 +4x+1
f(8y,x) = %, for x| <1,
x(x+1)°
f(Ss,x) = W, for |x| < 1, (40)
x(10x% +16x + 1
f(Spx) = ( Ty ), for|x| <1,
2
1
f(SS,x)M, for |x| < 1.

(1- x)*

Applying the generating functions, we can generate
strings of appropriate figurative numbers and apply them in
further studies.
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